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EINITE ELEMENTS FOR ELECTRICAL ENGINEERING.

PREFACE

AIMS

FINITE ELEMENTS METHODS FOR
ELECTRICAL ENGINEERING

To put into practice the FE method to analyse and design electrical machines and

apparatus.
To put into practice the 2D formulation.

To train in some commercial software programs for modelling and analysis of any

electric and magnetic element or machine.

ASSESSMENT

Numerical resolution of some applications is presented. If possible, compare

numerical results with analytical or experimental results.

SPECIALIZATION: Drives and electrical machines.

PROGRAM

OVERVIEW

History of FEM & FEA

FEM and FEA at the EUETIB

Application Areas

What's the difference between FEM & FEA ??
Electromagnetics & Related Analyses

INTRODUCTION

Maxwell equations

Constitutive relations

Electrostatic, Magnetostatic and Magnetodynamic Fields
Thermal problems

Boundary conditions

Reduction of a 3D problem to a 2D problem

Materials properties. Linear and Non-linear models
Permanent magnets (PM) modelling.

ANALYTICAL SOLUTION

Some important theorems

Analytical resolution. Separation of variables.
Electric machines modelling

Permanent Magnets

Some examples

NUMERICAL SOLUTION. FUNDAMENTALS AND BASIC METHODS

General concepts

Classification of electromagnetic (EM) problems
Finite Differences

Monte Carlo’s method

Approximation techniques
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EINITE ELEMENTS FOR ELECTRICAL ENGINEERING. PREFACE

FINITE ELEMENT METHOD
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS
Discretization and interpolation
Formulation
Assembly of the equations
Boundary conditions
TWO DIMENSIONAL FINITE ELEMENT ANALYSIS
Domain discretization
Interpolation
Variational formulation
Assembly to form the system of equations
Incorporation of the boundary conditions of the third kind
Imposition of the Dirichlet boundary condition
Nonlinear problems
Permanent magnets (PM) modelling
TRANSIENT SOLUTION.
Voltage fed electromagnetic devices
Coupling of field and electrical circuit equations.
Thick conductors. Thin conductors.
Equations for the whole domain.
MOVEMENT MODELLING FOR ELECTRICAL MACHINES
INTEGRAL EQUATION METHOD
Connection between differential and integral equations
The Moment MEthod
Boundary Element MEthod
Comparison of the FE and BE Methods
COMPUTATION OF OTHER QUANTITIES.
Post-processing. Basic quantities. Derived quantities.
Energy Stored in the Magnetic Field. Linked Flux. Inductance
Back emf
Resistance. Joule losses power.
Capacitance.
Eddy current losses
Force and Torque. Maxwell Stresses. Virtual Work method.
Core Losses
GENERAL ARCHITECTURE OF CAD SYSTEM BASED ON THE FINITE ELEMENT
METHOD
The data entry module
The solver
The postprocessor
Examples(2D): FEMM, MAXWELL_SV.
APPLICATIONS (2D)
Solved applications.
Aplications to solve.

Basic Bibliography
e M.V.K. Chari, S.J. Salon. Numerical methods in electromagnetism. Ed. Academic
Press. 2000.
e J.P.A. Bastos, N. Sadowsky. Electromagnetic modelling by finite element methods.
Ed. Marcel-Decker. 2003.
e S.J. Salon. Finite element analysis of electrical machines. Ed. Kluwer. 1995.
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Complementary Bibliography

e N. Bianchi. Electrical Machine Analysis using Finite Elements. CRC.
Taylor&Francis. 2005

e G.R. Buchanan. Finite Element Analysis. Schaum’s Outlines. Mc Graw-Hill. 1995.

e P.P. Silvester, R.L. Ferrari. Finite elements for electrical engineers (3rd edition).
Cambridge University Press. 1996.

e K. Hameyer, R: Belmans. Numerical modelling and design of electrical machines
and devices. Ed. WIT Press. 1999

e AB.J. Reece, T.W. Preston. Finite element methods in electrical power
engineering. Ed. Oxford University Press. 2000.

e M.N.O. Sadiku. Numerical techniques in electromagnetics. Ed. CRC Press.2001

e D. Poljak, C.A. Brebbia. Boundary Element Methods for Electrical Engineers. Wit
Press. 2005.

e B. Nogarede. Electrodynamique Appliquée. Bases et principes physiques de
I'électrotechnique. Ed. Dunod. 2005.

e Jan K. Sykulski. Computational Magnetics. Chapman&Hall. 1995.

e Les Techniques de I'Ingenieur.

Software’s manuals

D. Meeker. FEMM 4.0 user’'s manual.

D. Meeker. MIRAGE 1.0 user’s manual.
Ansoft Corp. Maxwell 2D Student version.
GRUCAD. EFCAD 6.0. Manual.
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Course Organization

e This course will be developed in theory and practice sessions (indicated in the next
table).

e Sessions will be held at :

= EUETIB. 187 Urgell Street.
= Meeting Room. O floor.
= 151t0 17 h each Thursday. A detailed program is given in final table.

e This course is equivalent to 3 ECTS (1 ECTS is equivalent from 25 to 30 h of
student effort). Half of this time is devoted to classes (both theory and practice). The
student will devote the rest of his time to personal study, solution of set exercises
and develop the final project.

e Each week | will put a documentation related to my next class on a course web
page.

o | would like you read and study this before the class.

o Dates indicated in the syllabus are subject to change.

Note: If documentation exceeds the web page quota, | will prepare a CD-ROM with
ALL of the documentation and the software necessary for this course (with extras)

e Normal communication must be carried by e-mail. In some cases telephone or
personal communication will be accepted.

e Each week | will present exercises.

0 Some exercises are solved.

0 You must solve the unsolved exercises and return these to me before the
final date indicated in the documentation.

e Afinal project must be completed.

0 You must talk to me about this work.

o |If possible I prefer applications that are interesting for you.

o |If possible, you must obtain experimental results to compare with numerical
results.

o |If possible, the project must be developed in a group to encourage the group
and interdisciplinary work. Groups may include up to 1 to 3 people.
Exceptions must be approved by me.

e The final project presentation must take place in a public session (attendees will be
other students of this course, other professors, and, of course, me)

e Projects must contain all of the following items:

Problem to solve.

Mathematical model of the problem.

Drawing of the model.

Simplifications and symmetries.

Boundary conditions and sources.

Mesh used.

Graphical maps of flux, potential, etc.

Main numerical results obtained.

Comparison with analytical and/or experimental results (If possible)

Conclusions.

e Electronic appendix with all of the simulation files.

e All work must be presented in electronic format such as MSWord or PDF files.
Please type your work. | don’t accept handwritten work or work which has been
scanned.

Good luck ©
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SYLLABUS
Week Class | Lesson
02/03/06 | Theory | INTRODUCTION
Maxwell equations, Electrostatics, Magnetostatics and Magnetodynamics
Fields. Materials property. Boundary conditions.
09/03/06 | Theory | INTRODUCTION
3D and 2D models. Linear and Non-linear models. Permanent magnets.
Applications. Electric machines modelling. Other: Thermal modelling.
16/03/06 | Theory | NUMERICAL SOLUTION : Introduction and basic methods.
Finite differences. Montecarlo method. Approximation techniques. Weighted
residual methods: point collocation, sub domain collocation, least squares,
Galerkin method. Variational principles.
23/03/06 | Theory | FINITE ELEMENTS METHOD |
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS. Discretization and
interpolation. Formulation. Assembly of the equations. Boundary conditions.
30/03/06 | Theory | FINITE ELEMENTS METHOD II
TWO DIMENSIONAL FINITE ELEMENT ANALYSIS. Domain discretization.
Interpolation. Variational formulation. Assembly to form the system of
equations. Incorporation of the boundary conditions. Nonlinear problems.
Permanent magnets (PM) modelling.
20/04/06 | Theory | FINITE ELEMENTS METHOD llI
TRANSIENT SOLUTION. Voltage fed electromagnetic devices. Coupling of
field and electrical circuit equations. Thick conductors. Thin conductors.
Equations for the whole domain. MOVEMENT MODELLING FOR
ELECTRICAL MACHINES.
27/04/06 | Theory | INTEGRAL EQUATION METHOD
The Moment Method. Boundary Element Method.
04/05/06 | Theory | COMPUTATION OF OTHER QUANTITIES
Energy. Flux. Magnetic Losses. Resistance. Inductance. Force. Torque.
Other guantities.
11/05/06 | Theory | GENERAL ARCHITECTURE OF CAD SYSTEM BASED ON THE FINITE
ELEMENT METHOD
Data entry module. Solver. Postprocessor. Examples(2D): FEMM, MIRAGE,
MAXWELL_SV, EFCAD.
18/05/06 | Practice | APPLICATIONS (2D)
Electrostatic fields: Dielectric materials. Exercise: High Voltage isolator
analysis.
Stationary currents: conducting material. Exercise: computation on fuse
resistance. Nominal current.
25/05/06 | Practice | APPLICATIONS (2D)
Magnetic fields: Electric machines. Permanent magnets. Exercise: (a)
D.C. machine analysis. Armature reaction. (b) Design of field coil on a
series DC motor.
01/06/06 | Practice | APPLICATIONS (2D)
Eddy currents. Exercise: Study to frequency variation and shape of
the rotor slot in the rotoric impedance (asynchronous machine)
08/06/06 | Practice | APPLICATIONS (2D)
Computation of losses. Resistances. Inductances. Force. Torque.
Exercise: (a) equivalent circuit of induction machine. (b) Torque
calculation of induction machine. (c) Main inductance calculation on
salient pole machine.
15/06/06 | Practice | APPLICATIONS (2D)
Transients. Exercise: Heating and Cooling of a Slot of an Electric
Machine.
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EINITE ELEMENTS FOR ELECTRICAL ENGINEERING OVERVIEW

OVERVIEW

The field of Electrical Engineering (or Electromagnetism) can be subdivided into three
major areas:

e Theoretical Electricity (Electromagnetism)
e Applied Electricity (Electromagnetism)
e Computacional Electromagnetism

Theoretical electricity deals with fundamental laws and principles of electromagnetism
studied for their intrinsic scientific value. Applied electricity transfers this theoretical
knowledge to scientific and engineering applications, especially as regards the
construction of mathematical models of physical phenomena. Computational
electromagnetism solves specific problems by simulation through numerical methods
implemented on digital computers.

Paraphrasing an old joke about mathematicians, one may define a
computational electrician as a person who searches for solutions to given problems,
an applied electrician as a person who searches for problems that fit given solutions,
and a theoretical electrician as a person who can prove the existence of problems and
solutions.

Analysis and design of electrical equipment is a difficult task due to some aspects:

e Complex geometry
e Mixed set of materials involved. Some of these have non-linear characteristics.
¢ Mixed phenomena are present:
o Electromagnetic field.
0 Thermal aspects
0 Mechanical aspects.
e Dynamical aspects (dependence on time. Only in a few simple cases can we find
on time analytical solutions. Numerical solution is the only available method to find
answers to many problems of electrical equipment design.

The first step of analysis is the selection of what aspects are considered in our case.
Other aspects are neglected or ignored. This step is named MODELING. This aspect is
the concern of the Theoretical Engineer.

Related to this modelling is the definition of the universe of analysis; for example if we
need to determine the distribution of temperature in a room, we neglect the variation of the
exterior temperature (this is considered a constant)

Another aspect is the level of detail in the analysis, for example:

e We can consider all of the conductors into a slot separately or together.

e We can consider a discrete distribution of currents (discrete number of slots) or a
continuous approximation of this (sheet of current).

e Static or dynamic analysis (consideration or not of the time variations)

e Etc.

© R. Bargall6. ELECTRICAL ENGINEERING DEPARTAMENT. EUETIB-UPC 1of8
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The second step of analysis is the selection of a numerical method to solve the problem.
This process is named DISCRETISATION of the problem. There are some methods for
this process:

Finite Element (FEM)
Boundary Element (BEM)
Finite Difference (FDM)
Moments method (MM)
Montecarlo method (MCM)

FDM is adequate for linear problems with regular geometry and time-dependent problems.
BE Mis used in some cases without meshing the complete geometry. The mathematical
aspects of this limits its application to linear problems.

MM and MCM are used only in linear cases and simple geometries.

FEM is the most used method to linear and nonlinear problems without restrictions on the
geometry.

This aspect is the concern of Computational Engineer.
What Does a Discretisation Look Like?

The concept of discretisation will be partly illustrated through a truly ancient problem: find
the perimeter L of a circle of diameter d. Since L = 17 d, this is equivalent to obtaining a
numerical value for .

Draw a circle of radius r and diameter d =2-r as in next figure (a).

Then inscribe a regular polygon of n sides, where n = 8 in Figure (b).

Rename polygon sides as elements and vertices as nodes.

Label nodes with integers 1, . . . 8.

Extract a typical element, say that joining nodes 4-5, as shown in Figure (c). This is an
instance of the generic element i—j pictured in Figure (d).

The element lengthis L; =2-r ~sin(%).

Since all elements have the same length, the polygon perimeter is

L =n-L,;

n ij

then the approximation to 1T is

L . T
=—-=n-sin(—
" d (n)

(a) (d)

2r sin(m/n)
%
!
v OMn
/\'TL J'f“\
Ay f

vt
w
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Values of 1, obtained for n = 1, 2, 4, . . . 65536 are listed in the second column of the
following table. As can be seen the convergence to 1T is fairly slow. The use of the power
of 2 is adequate to avoid the use of sinusoidal function:

If we start with n = 2, considering that sin(g) =1, and

sin(ar) = % 1= 1-sin@2- a)?

we can calculate any of the values as in the following table.

h pi Brrar

2| 200000000000 -1.141592554

4 28284271247 -0.313165529

8 30614674589  -0.030125195

16 31214451523 0020147501
J2 31365484905  -0.005044163
B4 3.1403311570  -0.001261497
126 31412772509 -0.000315403
256 3.1415138011 -7 .BE524E-05
812 314158729404 -1.97132E-05
1024 314558772583 -4 92831E-08
2043 31418914215 -1.23209E-06
4096 314159234560 -3.07979EO7
89192 31415925765 -7 70448E-03
16384 314155826335 -2.01265E-03
32765 31415526545 1.2178E-09
B5536 314195926453  -G.26858E-09

Some key ideas behind the FEM (and other discretization methods) can be identified in
this example. The circle, viewed as a source mathematical object, is replaced by polygons.
These are discrete approximations of the circle. The sides, renamed as elements, are
specified by their end nodes. Elements can be separated by disconnecting nodes, a
process called disassembly in the FEM. Upon disassembly a generic element can be
defined, independently of the original circle, by the segment that connects two nodes i
and j . The relevant element property: side length L;; , can be computed in the generic
element independently of the others, a property called local support in the FEM. The
target property: the polygon perimeter, is obtained by reconnecting n elements and
adding up their length; the corresponding steps in the FEM being assembly and solution,
respectively.

The third (and final) step of analysis is computation of additional results and analysis of
the solution. If the results aren’t the desired or wished results the analysis must be
repeated.
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» Mathematical Discretization + solution error
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This aspect is the concern of Applied Engineer.

History of FEM & FEA

» 1851 Schellbach avoided the differential equations by replacing them
with an approximate set of algebraic equations.

» 1942 R. Courant used a piecewise continuous function defined over a
triangle.

» 1956 Turner, Martin, Topp established a broader definition of numerical
analysis.

* 1960 Clough used for the first time the term of Finite Element Method.

» Early 70’s FEM was limited to expensive mainframe computers owned
by the aeronautics, automotive, defense, nuclear industries and, in
general sense, heavy industry.

e« 70's FEM further enhanced by Zienkiewicz&Cheung - variational
approach: Laplace and Poisson’s equations. Mathematicians developed
better solutions: Galerkin, Ritz emerged as optimum solutions for certain
categories of general problems. Modeling and solution of non-linear
problems.

» 1995 more than 3800 published papers about Finite Element Analysis.

Finite Element Analysis (FEA) was first developed in 1942 by R. Courant, who utilized the
Ritz method of numerical analysis and minimization of variational calculus to obtain
approximate solutions for vibration systems. Shortly thereafter, a paper published in 1956
by Turner, Clough, Martin, & Topp established a broader definition of numerical analysis.
This paper centered on the "stiffness and deflection of complex structures".

© R. Bargall6. ELECTRICAL ENGINEERING DEPARTAMENT. EUETIB-UPC 40f8
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By the early 70's, FEA used only on expensive mainframe computers generally owned by
the aeronautics, automotive, defense, and nuclear industries, and the scope of analyses
was considerably limited. Finite Element technology was further enhanced during the 70's
by such people as Zeinkiewicz & Cheung, when they applied the technology to general
problems described by Laplace & Poisson's equations. Mathematicians were developing
better solution algorithms, the Galerkin, Ritz & Rayleigh-Ritz methods emerged as the
optimum solutions for certain categories of general type problems. Later, considerable
research was carried out into the modeling & solution of non-linear problems, Hinton &
Crisfield being major contributors.

While considerable strides were made in the development of the finite element method,
other areas did not remain static. Very powerful mesh generation algorithms have been
developed. Commercial generators have the capability of meshing all but the most difficult
geometry. Superior CAE concepts have also emerged, it is not unusual to have a single
CAD model for producing engineering drawings, carrying out kinematic & assembly
analysis, as well as being used for finite element modelling.

Due to the rapid decline in the cost of computers and the phenomenal increase in
computing power, present day desktop computers are capable of producing accurate
results for all kinds of parameters (standard PC's are over 10 times more powerful than the
best supercomputers of the early 90's).

The finite element method now has it's roots in many disciplines, the end result is a
technology that is so advanced that it is almost indinguishable from magic. The vast
catalog of capability that comprises FEA, will no doubt grow considerably larger in the
future. CAE is here to stay, but in order to harness it's true power, the user must be
familiar with many concepts, including the mechanics of the problem being modelled. All
analyses require time, experience & most importantly, careful planning.

FEM and FEA at the EUETIB

e 1983. First FEM course, taught by J.C. Sabonadiere (ENSIEG, Grenoble, France)

e 1983. Some professors visited ENP de Grenoble (France). Software FLUX-2D at its
earlier releases.

e 1985. Doctoral dissertation of J. Llaverias “Exact determination of earth potentials in
big transformation areas”. By the use of the moment’s method.

e 1990. First contact with C. Lemos Antunes (Coimbra University, Portugal).

e 1990. Generalized Least Squares Method to modelization of earth structure (two-
layer model)

e 1992. R. Bargallo visited the Coimbra University for trained at “CADdyMAG”
software, developed by C.L. Antunes. The Electrotechnical Department bougth this
software.

e 1994. Electrotechnical Department organized the first course about “The FEM
applied to Electrical Engineering”. This course was taught by M. Bonet, R. Bargallo,
J. Moroén and with the collaboration of C.L. Antunes (Coimbra University)

e 1994-2000. CADdyMAG software is used in the regular courses (Design of
Electrical Machines)

e 2000-2005. FEMM software is used in the regular courses (Design of Electrical
Machines, Energy Systems and other)

e 2002. A. de Blas started its doctoral dissertation about histeresis modelling and its
application to the electrical machines design.
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Application Areas

In essence, the finite element is a mathematical method for solving ordinary & partial
differential equations. Because it is a numerical method, it has the ability to solve complex
problems that can be represented in differential equation form. As these types of equations
occur naturally in virtually all fields of the physical sciences, the applications of the finite
element method are limitless as regards to the solution of practical design problems.

Due to the high cost of computing power of years gone by, FEA has a history of being
used to solve complex & cost critical problems. Classical methods alone usually cannot
provide adequate information to determine the safe working limits of a major civil
engineering construction. If a tall building, a large suspension bridge or a nuclear reactor
failed catastrophically, the economic & social costs would be unacceptably high.

In recent years, FEA has been used almost universally to solve structural engineering
problems. One discipline that has relied heavily on the technology is the aerospace
industry. Due to the extreme demands for faster, stronger, lighter & more efficient aircraft,
manufacturers have to rely on the technique to stay competitive. But more importantly, due
to safety, high manufacturing costs of components & the high media coverage that the
industry is exposed to, aircraft companies need to ensure that none of their components
fail, that is to cease providing the service that the design intended.

FEA has been used routinely in high volume production & manufacturing industries for
many years, as to get a product design wrong would be detrimental. For example, if a
large manufacturer had to recall one model alone due to a piston design fault, they would
end up having to replace up to 10 million pistons. Similarly, if an oil platform had to shut
down due to one of the major components failing (platform frame, turrets, etc..), the cost of
lost revenue is far greater than the cost of fixing or replacing the components, not to
mention the huge enviornmental & safety costs that such an incident could incurr. The
finite element method is a very important tool for those involved in engineering design, it is
now used routinely to solve problems in the following areas:

o Structural strength design

e Structural interation with fluid flows
e Analysis of Shock (underwater & in materials)
e Acoustics

e« Thermal analysis

o Vibrations

e Crash simulations

e Fluid flows

o Electrical analyses

e Mass diffusion

e Buckling problems

e Dynamic analyses

o Electromagnetic evaluations

e Metal forming

e Coupled analyses

Nowadays, even the most simple of products rely on the finite element method for design
evaluation. This is because contemporary design problems usually cannot be solved as
accurately & cheaply using any other method that is currently available. Physical testing
was the norm in years gone by, but now it is simply too expensive.
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What's the difference between FEM & FEA ??

The terms 'finite element method' & 'finite element analysis' seem to be used
interchangeably in most documentation, so the question arises is there a difference
between FEM & FEA ?

The answer is yes, there is a difference, albeit a subtle one that is not really important
enough to lose sleep over.

The finite element method is a mathematical method for solving ordinary & elliptic
partial differential equations via a piecewise polynomial interpolation scheme. Put
simply, FEM evaluates a differential equation curve by using a number of polynomial
curves to follow the shape of the underlying & more complex differential equation curve.

Each polynomial in the solution can be represented by a number of points and so FEM
evaluates the solution at the points only. A linear polynomial requires 2 points, while a
guadratic requires 3. The points are known as node points or nodes. There are essentially
three mathematical ways that FEM can evaluate the values at the nodes, there is the non-
variational method (Ritz), the residual mehod (Galerkin) & the variational method
(Rayleigh-Ritz).

The finite element analysis is an implementation of FEM to solve a certain type of
problem. For example, if we were intending to solve a 2D stress problem. For the FEM
mathematical solution, we would probably use the minimum potential energy principle,
which is a variational solution. As part of this, we need to generate a suitable element for
our analysis. We may choose a plane stress, plane strain or an axisymmetric type
formulation, with linear or higher order polynomials. Using a piecewise polynomial solution
to solve the underlying differential equation is FEM, while applying the specifics of element
formulation is FEA, e.g. a plane strain triangular quadratic element.

Electromagnetics & Related Analyses

Many kinds of electromagnetic phenomenon can be modeled, from the propagation of
microwaves to the torque in an electric motor. Analysis of electrostatic and magnetic fields
passing through and around a structure provides insight into the response, and hence a
means for regulating these fields to attain specific responses.

FEA can be used to analyse the linear electric or magnetic behaviour of devices. Analyses
typically involve the evaluation of magnetic, electric and thermal fields. Further applications
include the analysis of shape-memory materials & piezoelectric effects. An analysis can be
static, harmonic or transient state in nature. Due to the complexity of the practical
applications of the technique, it is not unusual to have magnetic, dielectric and thermal
couplings in a single model. Such complex analyses generally make realistic modelling an
ardouous task.

Application Areas

The application areas include, but are not limited to the design of:
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e Rotating machines (DC motors, synchronous machines, induction motors, stepper
motors, coupling devices, brushless motors, switched reluctance motors, PM
motors, generators)

e« Energy transfer and conversion modules (transformers, cables, high voltage
devices, insulators, connectors & fuses).

o Electrical actuators (linear motors, electromagnetic brakes, contactors, magnetic
bearings, fuel injectors, electromagnetic launchers).

e Sensors (capacitive and inductive, speed, eddy currents non destructive testing,
magnetoscopy, resolvers, electric meters).

o Field generators (mass spectrometers, magnetic recording, polarisation fields,
magnetisation devices).

Analysis Types

e Magnetostatic Analysis. Magnetic analysis is used to design or analyze a variety
of devices such as solenoids, electric motors, magnetic shields, permanent
magnets, magnetic disk drives, and so forth. Generally the quantities of interest in
magnetostatic analysis are magnetic flux density, field intensity, forces, torques,
inductance, and flux linkage.

e Transient Electromagnetic Analysis. Transient magnetics allows performing
transient or steady state AC analysis designing for a variety of DC or AC devices
such as electric motors, transformers, and so forth. Generally the quantities of
interest in transient magnetics analysis are time functions of magnetic flux density,
field intensity, external, induced and total current densities, forces, torques,
inductance, and flux linkage.

e Time-Harmonic Electromagnetic Analysis. Time-harmonic electromagnetic
analysis is used to analyze magnetic fields caused by alternating currents and, vice
versa, electric currents induced by alternating magnetic fields (eddy currents). This
kind of analysis is useful with different inductor devices, solenoids, electric motors,
and so forth. Generally the quantities of interest in harmonic magnetic analysis are
electric current (and its source and induced component), voltage, generated Joule
heat, magnetic flux density, field intensity, forces, torques, impedance and
inductance.

e Electrostatic Analysis. Electrostatic analysis is used to design or analyze a variety
of capacitive systems such as fuses, transmission lines and so forth. Generally the
guantities of interest in electrostatic analysis are voltages, electric fields,
capacitances, and electric forces.

e Current Flow Analysis. Current flow analysis is used to analyze a variety of
conductive systems. Generally the quantities of interest in current flow analysis are
voltages, current densities, electric power losses (Joule heat).

e Thermal Analysis. Thermal analysis plays an important role in the design of many
different mechanical and electrical systems. Generally the quantities of interest in
thermal analysis are temperature distribution, thermal gradients, and heat losses.
Transient analysis allows you to simulate transition of heat distribution between two
heating states of a system.

e Stress Analysis. Stress analysis plays an important role in design of many different
mechanical and electrical components. Generally the quantities of interest in stress
analysis are displacements, strains and different components of stresses.
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INTRODUCTION

The operation of electrical systems designed to perform certain engineering
tasks depends, al least in part, on electrical, electromechanical, or
electrochemical phenomena. The electrical aspects of these applications are
described by Maxwell’s equations.

The theory of Electromagnetics (EM) took a long time to be established. It can
be understood by the fact that the EM quantities can not be “seen” or “touched”
(contrarily to others, such as mechanical and thermal quantities).

Actually, the majority of the EM phenomena were established by other scientists
before Maxwell (1831 — 1879):

Ampere (1775 -1836)
Gauss (1777 -1855)
Faraday (1791 — 1867)
Lenz (1804 — 1865)

among others (Coulomb, Lorentz, Laplace).

Maxwell, introducing an additional term (in 1862) to Ampere’s law, could
synthesize the EM in four equations. The physical possibility of this group of
equations (along with constitutive relations) is so high that very different
phenomena (e.g. microwaves and permanent magnet fields) can be precisely
described by it. Additionally, these equations survived the formulation of
relativity and were instrumental in shaping it; thus they also survived the
introduction of quantum theory!

While the formalism and the basic concepts of the EM are relatively simple,
realistic problems can be very complicated and difficult to solve. Some
examples of these complications are:

e Complicated geometry.
e Materials non-linearity.
¢ Non-static field sources.

It is impossible to find analytical solutions for many problems and that is the

main reason why numerical methods have become widely used tools in
Electrical Engineering today.
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Maxwell equations

Faraday introduced a new concept in which he envisioned the space between
interacting charges to be filled with fields. From Faraday’s point of view, electric
and magnetic fields are defined at a point r even when there is no charge
present there. The fields are defined in terms of the force that would be exerted
on a test charge q if it were introduced at r moving at a speed v at the time of
interest. The force is summarized in terms of the electric field intensity E and
magnetic flux density B by the Lorentz force law:

f=q-(E+vxB)
Gauss’s law
Gauss’s law describes how the electric field intensity is related to its source.

The net charge within an arbitrary volume V that is enclosed by a surface S is
related to the net electric flux through that surface by

ﬁe-E-dSzJ.”p-dV:D:aE
\

éD-dS:IV”p-dv

D is the electric displacement flux density and p is the charge density. If
different materials are present, Gauss’s integral law requires that

n-(¢,-E,~¢,-E,)=0

S

in the interface of different materials. o5 is the surface charge density and n
denotes the normal component of E.

Ampere’s integral law

The law relating the magnetic field intensity H to its source, the current density
J, is:

§H-d|=HJ-dS+d”D-ds
C S dtS

A surface current density in a surface S causes a discontinuity of the magnetic
field intensity. Ampere’s law requires that

n-(H,-H,)=K

in the interface of a surface. K is the surface current density and n denotes the
normal component of H.
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Charge conservation law

Embedded in the laws of Gauss and Ampere is a relationship between the
charge and current densities. Apply Ampere’s law to a closed surface, If the
contour C is regarded as the“drawstring” and S as the “bag,” then this limit is
one in which the “string” is drawn tight so that the contour shrinks to zero.thus
the contour integral vanishes:

|
\ /
NS iH.m:o:gJ.derjth-dS

After, the surface integral of the electric displacement can be replaced by the
total charge enclosed:

d
jfjJ-dS+(jthjp-dV:O

This is the law of charge conservation. This equation shows that the net current
out of the volume requires that the net charge enclosed be decreasing with
time. The continuity condition associated with charge conservation is

Implicit in this condition is the assumption that J is finite. Thus, the condition
does not include the possibility of a surface current.

Faraday’s integral law.

The laws of Gauss and Ampere relate fields to sources. The statement of
charge conservation implied by these two laws relates these sources. New
integral laws are introduced that do not involve the charge and current
densities.

Faraday’s integral law states that the circulation of E around a contour C is

determined by the time rate of change of the magnetic flux linking the surface
enclosed by that contour:
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d
§>E-d|=—mg8-ds

C

The continuity condition associated with Faraday’s law is
n-(E,-E,)=0

Gauss’s integral law of magnetic flux

The net magnetic flux out of any region enclosed by a surface S must be zero:
ffB-ds=o0
S

The continuity condition associated with Gauss’s integral law of magnetic flux is:

n-(B,-B,)=0
SUMMARY OF MAXWELL'S INTEGRAL LAWS
Name Integral law
Gauss'’s law ffe-E-ds=[[[p-av=>D=scE
\

jE}D-dsszjp-dv

Ampere’s law

fH-di=[f3-ds+ % [[D-ds
C S dt S

Faraday’s law §E-d| :_;jt”B.ds
c s

Magnetic flux ﬁB-dS -0
continuity S
Charge conservation d
IE .d3+dtmp.dv =0
S \
SUMMARY OF CONTINUITY CONDITIONS
Name Continuity condition

1 Gauss’s law n-(e,-E, &, E,)=0,

2 Ampere’s law n-(H,-H,)=K

3 Faraday’s law n-(E,-E,)=0

4 | Magnetic flux continuity n-(B,-B,)=0

5 Charge conservation

g ! n (Ja—Jb)+d§tS:0
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Divergence theorem

The divergence of a vector A is defined in terms of the limit of a surface integral:

divA = lim i-ﬁA.ds
AV»OAV S

In Cartesian coordinates, the divergence operator is

oA, OA, OA,
+ +
ox oy oz

divA =

This results suggests an alternative notation. The delta operator is defined as:

v=ilijlikl

oXx "oy oz
where i, j and k are unitary vectors. So that divA can be written as (dot product)
divA=V-A

The following table shows the divergence operator in some common coordinate
systems.

Cartesian oA, OA, OA,

coordinates ox oy "o

CyIindricaI 1 a(r.Ar) 1 oA, OA,

coordinates o r og "5

Spherical 1 8(r2 : Ar) 1 a(A, -sin(d)) 1 oA,
coordinates 2 sin(6) o0 Y sin(@) 0

Divergence theorem shows meaning to replace the integration over the volume
to integration around the contour:

j’;}(A-dszjV”v-A-dv

The div notation suggests that this combination of derivatives describes the
outflow of A from the neighbourhood of the point of evaluation.

Curl operator

The curl of a vector A is defined in terms of the limit of a contour integral:
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curlA=lim i~§A~d|
AS—>0 AS -
In Cartesian coordinates, the curl operator is
oA, \ . A [ CoA A
curla=| P _ | [OA_ A S+ Ay
oy oz oz OX ox oy

So that curlA can be written as (vector product)

curlA=Vx A
Thus in Cartesian coordinates:
i j k
ViAol @ 0 0
oXx oy oz
A A A

The following table shows the curl operator in some common coordinate
systems.

Cartesian oA, OA)) . (aAX oA, ) . (OA,  OA ‘
coordinates oy o oz ax ox oy

Cylindrical 1 oA, OA, oA OA, 1 6‘(r-A¢) oA,
coordinates | | = 5, ~ 4, |'& T - s i B e B

r o o oz or r\ o o
Spherical 1 (a(A,-sin@) oA, 1( 1 oA or-A)
coordinates . : 0 — a, + - il S -a, +
r-sin(o) o¢p o¢p r \sen(d) 0¢ or
r or 00

Stokes’s (curl) theorem shows meaning to replace the integration over the
surface to integration around the contour:

§A-d|=j Vx A-dS
C S

A non-zero curl implies that the corresponding vector field has a rotational
property. One way to look for a curl is to imagine that the vector field
corresponds to the flow of water. If we place a small paddle wheel in the field
then the presence of a non-zero curl suggests that the wheel will rotate.

If A has no divergence, a field is said to be solenoidal. If it has no curl, it is
irrotational.
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Gradient operator
Differential of a scalar function A is

dA a—A dx + oA, dy+6—A dz
OX oy 0z

In vector notation this can be showed how:
dA=[iP L PP G dxr jody +k-d2)
8x oy 0z

The gradient of a scalar function A is defined as (in Cartesian coordinates)

gradA=VA= |% j%+k%
OX oy 0z

gradA is a vector, perpendicular to a surface on which A is constant and
pointing in the direction of increasing A. We also note that gradA points to the
direction of maximum change in A.

Applying the above theorems (Stokes and divergence) we can obtain the
differential forms of Maxwell’s equations:

Gauss’s law

ﬁ:eEdS j”p dv
N

Ampere’s law

35H -dl = ”J dS+—J' D-dS

§H dI ”VXH dS

”vXH -dS = ”J dS+—”D dS = VxH = J+(L[t)

Faraday’s law

ng = ” d dB

e dl—jjv <E.ds IJVXE"’S:‘dtLIB-dS vxe=-¢
¢ s
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Magnetic flux continuity

ﬁB dS =0
ﬁB dS mv

Charge conservation

jEjJ-dS+:t.[V”p-dV=0
ﬁJ-dS:jjjv-(J) dv

mV dV+fmp dV =0=V-(3)+ f;/t?zo

V- dV 0=V-B=0
.o (117

SUMMARY OF MAXWELL’S DIFFERENTIAL LAWS

Name Integral law
1 Gauss’s law V(e-E)=p
2 Ampere’s law VxH—J+d—D
dt
3 Faraday’s law VxE __dj
dt
4 Magnetic flux continuity V-B=0
S Charge conservation dp
V . (J )“r‘ a = O

Differential forms are better than integral forms. Integrals forms are dependents
on volume and the surface of integration. Differential forms are independent of
these.

Constitutive relations

The field vectors D and E and also B and H are related by the properties of the
materials at any point in the field region. These are often referred to as the
constitutive properties of the material and are given by:

=
-H
=

(a) D
(b) B
(c) J

I
Q*:m
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¢ is the permittivity of the material, p is the magnetic permeability of the material
and o is the conductivity of the material. In some cases these values can be
indicated in relative form:

E=8y" &

ﬂzﬂo‘ﬂr

€0, Mo are the values for free space and g, p, are the relative values of the
material.

Equations (1) to (4) and relations (a) to (c) are the well known Maxwell's
equations.

With the addition of the continuity conditions we can solve any
electromagnetic problem.

Maxwell’'s equations do not make a distinction between low and high frequency
applications, but for practical applications it is possible to adapt them to these
two situations.

We will be interested in low-frequency phenomena. When describing low
frequency problems the Maxwell’s equations can be divided into two groups:

e Electrostatics and
e Magnetostatics.

And, an important point:
These can be treated independently!

The following pages will be devoted to this approach.

Maxwell’s equations

High frequency (Waves)

Low frequency

/\

Electostatics Magnetics
Magnetostatics Magnetodynamics
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Second order operators. Laplace operator.

It is possible to combine two vector operators on scalar functions and
vector functions. One of these is the Laplace operator (called in short, the
Laplacian), this is the div of grad of a scalar function U:

- (19419 .,2).
div(grad(U)) =V-U —(I 8x+J8y+ké’zj grad(U)

Following table shows the Laplace operator in some common coordinate
systems.

Cartesian oMU oW s
: + +
coordinates oxt | oy? | ar?

Cylindrical 1 0 ( auj 1 U o«
coordinates roor r2 a¢2 022

Spher.ical 1.a(r2'auj+1'a(sin(9)'auj+ 1 .@ZU
coordinates 2 r2.sin(@) 00 26 ) r?.sin’*(9) oz°

If A is a vector function, we can demonstrate that:
V2 A= grad(div(A)) —curl(curl (A))

where V?A is called the “vector Laplacian” of A. This is written as (in Cartesian
coordinates)

VEA=i-VZA +j-VZA +k-V?A,
where, for example, the component in the Ox direction is:

2 2A ZA
VZsza 'AZ\X+8 2X+8 =
OX oy 0z
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Electrostatic, Magnetostatic and Magnetodynamic
Fields

In general, there are two classes of electromagnetic fields can de described:

e The time independent static and
e Time varying fields.

They can be scalar and vector fields. A typical scalar field for example is the
electrostatic potential distribution V(x,y,z) between charged electrodes; and the
magnetic field intensity H(x,y,z) surrounding a current carrying conductor is a
typical vector field.

We have to distinguish between the slow and fast varying electrical current flow
field with regard to the geometrical dimensions of the current carrying
conductor.

[ Electric E
static

< Magnetic B

._ Current flow J
Electromagnetic < Electric E

fields /Slow varying _
(quasi-static) Magnetic B
Non- < Current flow J
static
\ Quasi- — Current flow J
fast varying stationary
N

Electromagnetic
waves

The slow varying fields are understood to be fields not leading to current
redistributions. This means that there are no eddy current effects as the
dimensions of the current carrying conductor are smaller than the penetration
depth of the field. The currents at those frequencies are distributed as in the DC
case, uniformly over the whole surface of the conductor. Eddy current effects
are considered in the fields with fast varying time dependence, due to the low
frequency being treated as quasi-stationary. High frequency fields, as focussed
on antenna problems and leading to the electromagnetic waves, are not
considered in this course.
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Most of the physical issues in energy engineering can be described by quasi-
static phenomena. Slowly varying and periodic fields up to 10 kHz are
considered to be quasi-stationary. Electrical energy devices such as motors,
actuators, induction furnaces and high voltage transmission lines are operated
at low frequency.

Typical examples of quasi-static fields are the fields excited by coils in rotating
electrical machines and transformers. Inside these conductors the displacement
current is negligible and the magnetic field H outside the coil is exclusively
excited by the free current density J. For those quasi-static fields, Ampere’s law
is applicable:

VxH=1J

Deciding whether the displacement current can be neglected or not, depends
on the wavelength A of the problem considered in the frequency domain. If it is
large compared to the physical dimensions of the problem L, the displacement
current is negligible.

In general if
A=~ (5..10)L

the field problem can be considered as quasi-static. For this class of problem,
the interesting fields vary slowly and can be periodic. So, three categories of
problems are distinguished:

e Static
e Slowly varying transient
e Time-harmonic eddy current

In time-harmonic problems sinusoidal varying field quantities is assumed. In

theory, a time-harmonic solution is only valid for linear systems as a sinusoidal
excitation does not yield a single frequency response in the non-linear case.

Electrostatic fields

The two fundamental laws governing these electrostatic fields are Gauss’s law
and Faraday’s law, and the constitutive relation between D and E

Gauss’s law vV-(D)=p 1
Faraday’s law VxE=0 2
Constitutive relation D=¢-E 3

In terms of the electric (scalar) potential V, E is expressed as

E=-VV
or

V={Em
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Combining 1, 3 and the above relation, gives Poisson’s equation:

V-V =—p
or, if £ is constant:

vy =-~
&

When p =0, this equation becomes Laplace’s equation:

VA& =0

Laplace’s equation of the Electric field for conductive media

Here we use the charge conservation equation (4) and constitutive relation (5).
This is usually referred to as point form of Ohm’s law.

Charge conservation v-(3)=0 4
Constitutive relation J=0cE 5

Although this expression comes from an equation linked to magnetic cases, it
deals with electrostatic fields and that is the reason why it is presented here.

Using the constitutive relation (5) and E =-VV we have
V-J=V.o(-VV)=0
or, if o is constant:

V¥V =0
which is Laplace’s equation.

Magnetostatic fields

The basic laws of magnetostatic fields are Ampere’s law, and the law of
conservation of magnetic flux

Ampere’s law V x H J 6

Magnetic flux -B=0 7
continuity

Constitutive relation B=u-H 8

In terms of the magnetic (vector) potential A
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B=VxA

Applying the vector identity
VxVxF=V(V-F)-V’F
to the equations (6) and 8, substitutingB =V x A, and assuming Coulomb
gauge condition (V-A=0) leads to Poisson’s equation for magnetostatic
fields:
ViA=—u-]

When J=0, this equation becomes Laplace’s equation:

VZA=0
The electric vector potential

In analogy to the magnetic vector potential A, we can define the electric vector
potential T which is related to the current density J by

J=VxT

assuming E to be time independent, Vx E =0 and, with E = %, we now have:

Vx[l-Vij=0

o

Comparing this with the formulation presented in the previous paragraph the
following equivalent relationships can be written:

qQ |Mje— |-

‘H J=0c E

Laplace’s equation for this problem is similarto V>A=0:

VT =0
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Magnetodynamic fields (low frequency quasi-stationary fields)

The basic laws of magnetodynamic fields are Ampere’s law, without
consideration of time variation of electric displacement flux density D (

a%t ~ 0, Faraday’s law, Magnetic flux continuity and the constitutive relations.

Ampere’s law VxH=1J 1
Faraday’s law VxE =_d£ 2
dt

Magnetic flux continuity V-B=0 3
B=u-H 4
J=0oc-E 5

In terms of the magnetic (vector) potential A

B=VxA
and substituting in Faraday’s law, we can obtain:
VxE=—d—B=—£VxA
dt ot

Now employing Ohm’s law to calculate the eddy currents Je yields:

%=0”E=ﬂ7§é
ot

Ampere’s law can now be rewritten, yielding the A-formulation for the quasi-
stationary magnetic field in the time domain:

VXJQVXA—HréézJ
Y7, ot

Substituting again
VxVxA=V(V-A)-V’A
and assuming the Coulomb gauge condition (V-A=0) leads to

VZA—y-J-z?:—y-J

Assuming sinusoidal excitation currents with an angular frequency » and thus
substituting
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yields the A-formulation in the frequency domain to solve eddy current
problems:
VA-j-o-pu-oc-A=—u-l

We can develop other equations to B, E, H, and J, in similar way. The following
table shows these equations.

oH
VZH—/J'U'EZO
oB
VZB—IU'O"gZO
oE
VZE—,U'O"E:O
aJ
VZJ—IU'G'E=O

These equations are named as diffusion equations.

Magnetodynamic fields (waves)

The basic law of magnetodynamic fields are Ampere’s law, Faraday’s law,
Gauss’s law and the constitutive relations.

Ampere’s law VxH:J+d—D 1
Faraday’s law VxE :_dj 2
dt

Gauss’s law V-(D)=p 3
D=¢-E 4
B=x-H 5
J=0-E 6

1

V=—

y7;

Substituting in Ampere’s law with use of potential vector A: B=V x A
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VAH =V(V/\V/\A):J+8itE

VAVAA=1] Jr,LzaitE

O*A

dZ

V- (V-A)-V*A= 1] +y5§:/¢\]—y8v2/ — ue

and assuming the Lorentz condition

N
V-A=—pue—
" 4
leads to
N ) N O*A
—usN ——-V°A= 1 — usvV——-— ue
peN — W = peN g
O°A
VA - e 22 =— 1]

for slow varying fields 8@? ~ 0, and we obtain:

VAH =1
ViA=—1d

Poisson’s equation for magnetostatic fields!

Using a scalar potential V defined as:

And substituting in Gauss equation gives:

v.E= - yy_
£ ot

using Lorentz condition once results in:

oV P
ot? £

VV —u-s-
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These two equations are named non-homogeneous wave equations. The
following table shows these. These two equations with the addition of Lorentz
conditions are equivalent to the four Maxwell equations. These equations are
valid anywhere.

MAXWELL EQUATIONS AS A FUNCTION OF POTENTIAL

%A

VA- e 22 =—ud
oV o,
VN —u-¢- =-
e o £

N

V-A=—pue—

" a

The applications of these equations not will be considered in this course.

Thermal problems

Heating is a very frequent phenomenon on electromagnetic devices and, in
many situations, the evaluation of temperature is necessary to avoid over-
heating in structures. In our area, there are different sources of heat such as,
Joule effects by eddy and conducting currents, magnetic hysteresis and also
mechanical friction.

Now, we will present briefly some topics on heat transmission, but for more
detailed presentation, specialized references may be consulted.

There are three different ways of that heat is transmitted:

e Conduction
e Radiation
e Convection

Thermal conduction
Conduction is a process where the heat is transmitted inside a body or between
different bodies having physical contact. The basic equation describing thermal

conduction is (Fourier’'s equation)

C-§+V-(—Z-VT):Q

where:

e cis the thermal capability (J /(m*-° C))
e Jis the thermal conductivity (W /(m-° C))
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e Tis the temperature (°C)
e Qs the thermal source volumetric density (W /m?®)

If A is independent of the temperature or position, the above equation can be
rewritten as:

VZT_S.g:_g
A ot A

This equation is similar to

VZA_ﬂ.U.Z‘:_ﬂ.J

and can be solved in similar way.

For instance, Q can be defined as the Joule’s effect source by:

J 2
Q="
O
where J is the current density (for both, eddy or conducting currents, depending

on the studied case)

Convection transmission

Convection occurs when a fluid has contact with a heated solid body. There will
be a constant movement where the heated particles will be replaced by cooler
ones. The main effect, heat is transmitted from the body to the fluid by the
following equation (Newton’s equation):

dT
A-—m=-h-(T-T

where

h is the coefficient of heat transfer by convention (W /(m?-° C))
Ais the thermal conductivity (W /(m-° C))

T is the temperature at the heated wall (°C)
T. is the temperature of the fluid at a point far from the wall (°C)

The quantity h depends on the fluid properties, velocity and geometry. In
practical applications, h is difficult to evaluate and it is normally determined
experimentally.
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Radiation

As seen before, normally for convection and conduction, at least two materials
must be present in the system. This is not the case for radiation. A body emits
electromagnetic waves. This radiation can reach another body. Part of these
waves will be reflected and part will be absorbed by this second body. This last
portion will be transformed into thermal energy.

A body at temperature T radiates energy to another at temperature T,, involving
it, according to the following expression

i-(:i-ls--n:g-;/-(T“—T‘la)

where

e 7 is the Stefan-Boltzmann constant
e ¢ is the emittivity of the body

This class of heat transmission is sometimes not considered.

Boundary conditions

Our problem consists of finding the unknown function ® of a PDE. In addition
to the fact that @ satisfies equation L® =g within a prescribed solution region
R, must satisfy certain conditions on S, the boundary of R. The choice of the
boundary conditions not only influences the final solution, but can further reduce
the analysis domain.

Different field solutions with different boundary conditions.
Left: Dirichlet boundary condition
Right: Neumann boundary condition

The boundary conditions that can be imposed form three main groups:
e Dirichlet condition: this condition is assigning by fixing a determined

value of the potential on a given boundary curve. In this way, this curve is
characterised by a constant value of the potential, then the equipotential
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lines result tangential to such a boundary. In other words, no line crosses
that boundary.

The Dirichlet condition can be expressed as
d(r)= f(r) r onS.

If f(r ) = 0 this condition is named homogeneous condition; if f(r ) <> 0
is known as inhomogeneous condition.

Neumann condition: this condition is assigned by fixing the normal
derivative of the potential on a given boundary curve. In other words, the
lines crosses the boundary in a known way.

The Neumann condition can be expressed as

od(r) _

r ronS
n g(r)

If g(r ) = 0 this condition is named homogeneous condition; if g(r ) <> 0
is known as inhomogeneous condition.

Mixed boundary condition

M) 4 h(ry-d(r)=w(r) rons
on

where h(r ) and w(r ) are explicit known functions on the boundary S.

Reduction of the analysis domain by means of assignment of suitable
Dirichlet and Neumann boundary conditions.

These boundary conditions are particularly useful in structures characterised by
one or more symmetry axes. The analysis is accomplished only on a part of the
total structure, imposing the Dirichlet or the Neumann conditions on the
symmetry axis itself.

Consider, for example, the three column single-phase reactance. The flux
density vectors are tangent to the axis BB’. The structure can be simplified by
imposing the Dirichlet boundary condition along the BB’ line.
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Also, the flux density vectors are normals to the axis AA’. The structure can also
be simplified by imposing the Neumann boundary condition along the AA’ line.

Al

NI

Vst R

N

i

Here we have reduced the complete structure to % of its size. The study on the
reduced structure will be simpler and faster.

© R. Bargall6. ELECTRICAL ENGINEERING DEPARTAMENT. EUETIB-UPC 22 of 36




EINITE ELEMENTS FOR ELECTRICAL ENGINEERING INTRODUCTION TO ELECTROMAGNETISM

N

AN

Reduction of the domain by means of the periodic conditions

In multi-pole rotating machines the field analysis can be reduced to an even
number of poles by employing periodic boundary conditions. Let p be the
number of pole pairs and using the polar coordinates, the periodic boundary
conditions are:

A(r,0)=A(r,<9+2~k~7;j

The analysis can be reduced to an odd number of poles by employing anti-
periodic boundary conditions:

A(r,e):—A(r,¢9+(2-k—1)-7;j
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If the symmetry or periodicity boundaries are individuated, the study of a
complex structure is reduced to a study only one of its parts. This yields the
double advantage:

e The reduction of the domain to be analysed, with the resultant reduction
of calculation time.
e The possibility of a more accurate analysis of the remaining part.

Open Boundary Problems

Typically, finite element methods are best suited to problems with well-defined,
closed solution regions. However, a large number of problems that one might
like to address have no natural outer boundary. A prime example is a solenoid
in air. The boundary condition that one would like to apply is A = 0 at r = «.
However, finite element methods, by nature, imply a finite domain. Fortunately,
there are methods that can be applied to get solutions that closely approximate
the “open boundary” solution using finite element methods.
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Truncation of Quter Boundaries

The simplest, but least accurate, way to proceed is to pick an arbitrary boundary
“far enough” away from the area of interest and declare either A = 0 or dA/0n =
0 on this boundary. A rule of thumb is that the distance from the center of the
problem to the outer boundary should be at least five times the distance from
the center to the outside of the objects of interest. Truncation is the method
employed by most magnetic finite element programs, because it requires no
additional effort to implement. The down side to truncation is that to get an
accurate solution in the region of interest, a volume of air much larger than the
region of interest must also be modeled. Usually, this large region exterior to the
area of interest can be modeled with a relatively coarse mesh to keep solution
times to a minimum. However, some extra time and space is still required to
solve for a region in which one has little interest.

Asymptotic Boundary Conditions

The simple way to approximate an “open” boundary (other than truncation) is to
use asymptotic boundary conditions. The result is that by carefully specifying
the parameters for the “mixed” boundary condition, and then applying this
boundary condition to a circular outer boundary, the unbounded solution can be
closely approximated. Consider a 2-D planar problem in polar coordinates. The
domain is a circular shell of radius r, in an unbounded region. As r —<, vector
potential A goes to zero. On the surface of the circle, the vector is a prescribed
function of 6. This problem has an analytical solution, which is:

a
r—m-cos(m-9+am)

A(r,0) = i

m=1

where the a,, and a, parameters are chosen so that the solution matches the
prescribed potential on the surface of the circle.

One could think of this solution as describing the solution exterior to a finite
element problem with a circular outer boundary. The solution is described inside
the circle via a finite element solution. The trick is to knit together the analytical
solution outside the circle to the finite element solution inside the circle.

From inspetion, one can see that the higher-numbered harmonic, the faster the
magnitude of the harmonic decays with respect to increasing r. After only a
short distance, the higher numbered harmonics decay to the extent that almost
all of the open-space solution is described by only the leading harmonic. If n is
the number of the leading harmonic, the open-field solution for large, but not
infinite, ris closely described by:

A(r,0) za—ﬂ-cos(m-9+am)
r
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Differentiating with respect to r yields:

oA a,

o rmt

cos(m-6+«a,,)

If the above equation is solved for a, and substituted into the complete solution,
the result is:

% + m A=0

o r
Now, this equation is a very useful result. This is the same form as the mixed
boundary condition. If the outer edge of the solution domain is circular, and the
outer finite element boundary is somewhat removed from the area of primary
interest, the open domain solution can be closely approximated by applying the

above equation to the circular boundary.

Some care must be used in applying this boundary condition. Most of the time,
it is sufficient to take n = 1 (i.e the objects in the solution region look like a
dipole when viewed from a large distance). However, there are other cases
(e.g. a 4-pole Halbach permanent magnet array) in which the leading harmonic
is something other than n= 1. You need to use your insight into your specific
problem to pick the appropriate n for the leading harmonic. You also must put
the objects of interest roughly in the center of the circular finite element domain
to minimize the magnitude of higher-order field components at the outer
boundary.

Although the application of this boundary condition requires some thought on
the part of the user, the results can be quite good. The following figure
represents the field produced by an air-cored coil in free space. The asymptotic
boundary condition has been applied to the circular outer boundary. Inspecting
the solution, flux lines appear to cross the circular boundary as if the solution
domain were truly unbounded.

To apply the Asymptotic Boundary Condition, define a new, mixed-type
boundary condition.

" | hr)- () =w(r) ronS
on

Then, pick the parameters so that:

h(r) =

or —_—
My Ty fo

w(r)=0

where r, is the outer radius of the region in meters (regardless of the working
length units).
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Kelvin Transformation

A particularly good approach to “open boundary” problems is the Kelvin
Transformation, a technique first discussed in the context of computational
magnetics. The strengths of this technique are:

o the effects of the exterior region are, in theory, exactly modeled by this
approach;

e a sparse matrix representation of the problem is retained (unlike FEM-
BEM methods, which give the same “exact solution” but densely couples
together the boundary nodes).

e requires no “special” features in the finite element solver to implement
the technique, other than the ability to apply periodic boundary
conditions.

Derivation
In the “far field” region, the material is typically homogeneous (e.g. air and free

of sources) In this case, the differential equation that describes vector potential
A is the Laplace equation:

VZA=0

If we write the above equation in polar notation, A is described by (2D analysis):

=0

1 a( 8Aj 1 9%A
or 2

ror\ or) r’ o4’

Assume that the “near field” region of the problem can be contained in a circle
of radius r, centred at the origin. The far-field region is then everything outside
the circle. One approach to unbounded problems is to attempt to map the
unbounded region onto a bounded region, wherein problems can more easily
be solved. Specifically, we desire a way to transform the unbounded region
outside the circle into a bounded region. One simple way to make such a
mapping is to define another variable, R, that is related to r by:
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r2

0
r
By inspecting the above transformation it can be seen that this relationship
maps the exterior region onto a circle of radius r,.

R =

The next step is to transform the differential equation that the field must satisfy,
into the mapped space. That is, the Laplace equation must be written in terms
of R and O rather than r and 6. We can evaluate derivatives in terms of R
instead of r by employing the chain rule:

o _ ar(aRj __o(R
or OR\ or orr,
Now, we can note thatatr=R =r,,

oA __OA
or OR

and after some algebraic manipulation we must obtain:

1 a[ aAj 1 0°A
. _ =
R 6R\ R/ R? o¢?

The transformed equation for the outer region, has exactly the same form as
that for the inner region, only in terms of R rather than r. The implication is that
for the 2-D planar problem, the exterior can be modelled simply by creating a
problem domain consisting of two circular regions:

e one circular region containing the items of interest, and an additional
circular region to represent the “far field.” Then, periodic boundary
conditions must be applied to corresponding edges of the circle to
enforce the continuity of A at the edges of the two regions. They is the
continuity of A at the boundary between the exterior and interior regions.

o The second circular region exactly models the infinite space solution, but

does it on a bounded domain—one could always back out the field for any
2

point in space by applying the inverse of R = rl.
r

As an example, consider an E-core lamination stack with a winding around it.
Suppose that the objective is to determine the field around the E-core in the
absence of any flux return path (i.e. when the magnetic circuit is open). In this
case, the flux is not constrained to flow in a path that is a priori well defined,
because the laminations that complete the flux path have been removed.
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The geometry was chosen arbitrarily, the purpose here being more the
procedure than the actual problem. The material for the core is linear with a
relative permeability of 2500. The coil carries a bulk current density of 2 MA/m2.
The input geometry is shown in the following figure. Here the core is placed
within a circular region, and a second circular region is drawn next to the region
containing the core. Periodic boundary conditions are applied to the arcs that
define the boundaries as shown in the figure.

aStaal

Also notice that a point has been drawn in the center of the exterior region. A
point property has been applied to this point that specifies that A = 0 at this
reference point. The center of the circle maps to infinity in the analogous open
problem, so it makes sense to define, in effect, A = 0 at infinity. If no reference
point is defined, it is fairly easy to see that the solution is only unique to within a
constant. The situation is analogous to a situation where Neumann boundary
conditions have been defined on all boundaries, resulting in a non-unique
solution for A. The resulting solution is shown in the following figure. As is the
intention, the flux lines appear to cross out of the of the region containing the
core as if unaffected by the presence of the boundary. The flux lines reappear in
the domain representing the exterior region, completing their flux paths through
the exterior region.
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Reduction of a 3D problem to a 2D problem

The 3D problem is reduced considering the symmetry of the system. The
symmetries can be of two kinds:

e Plane symmetry. The
electromagnetic phenomena are
supposed to be identical on each
plane perpendicular to an axis,
called a symmetry axis. The field is
identical on each section of the /
element normal to the z-axis, if we
suppose an infinite length of the
system and neglecting the end
effects.

The analysis is then given on the (x,y) plane. The solution is very simply and
easily obteined. For example on the magnetostatic problem, we can obtain
the following conditions:

0 The current density vector J has the z axis component
J =(0,0,3,), only. This component can be a function of the x and y
coordinates, i.e. J, =J,(X,Y).

o0 The magnetic vector potential A has a component parallel to
vector J only, that is the z axis component, A=(0,0,A,). This
component is a function of the x and y coordinates, i.e.
A, =A(XY).

o The flux density vector B has components only on the (x,y) plane,

as obtained from:
B=VxA

5= oA,  OA, 0
oy OX

:
s
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The analysis is then given on the (r,z) plane. The solution is very simple and
easy. For example on the magnetostatic problem, we can obtain the
following conditions:

o The current density vector J has @ axis component J =(0,J,,0),
only. This component can be a function of the r and z coordinates,
ie. J, =J,(r,z).

o The magnetic vector potential A has component parallel to vector
J only, that is @ axis component, A:(O,AQ,O). This component is
a function of the r and @ coordinates, i.e. A, = A,(r,z).

0 The flux density vector B has components only on the (r, &) plane,
as obtained from:

B=VxA
That is:
OA 10
B=|2% 0 =Z(r-A
[82 rar( ”)j

O) O,

®

Materials properties. Linear and Non-linear models

It is possible to apply Maxwell's equations in various situations and in
combinations of different materials. For this purpose it is necessary to introduce
the concept of magnetic anisotropy. Consider a material whose magnetic
permeability is dominant in a certain direction. One such material is a sheet of
iron with grain-oriented structure or thin plates made of sheet metal which form,
for example, the core of a transformer, as in the following figure.

y

%

It is reasonable to assume that in both cases, the magnetic flux flows more
easily in the direction Ox. In the first case, this is due to the orientation of the
grains and in the second due to the presence of small gaps between the layers
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of sheet metal. Assuming a field intensity H whose components Hy and H, are
equal to H and if 4, and u, are the permeabilities in the direction Ox and Oy

respectively, we have:
Bx =My H
By =y H

X

y
We note that By is larger than B,. We conclude that the relation
B=u-H

where x is a scalar, is not general since it does not satisfy the cases above
mentioned. Because of this, we introduce the concept of permeability tensor
denoted by |4 . In general form, the relation between B and H can be written as:

B, My My My | | H
By =My Hy Hy Hy
B, | |#. 4, u,|[H,
B =[s-H

In general applications we can write similar relations to other characteristics,
such as the conductivity or permittivity:

E=ls-D

J=|ol-E
Besides the concept of anisotropy, which complicates the study of magnetic and
electric materials, we introduce another phenomenon, frequently encountered in
electromagnetic devices. In these devices, the magnetic permeability is not
constant but depends on the particular value of H in the magnetic material in

question. This phenomenon is called non-linearity or saturation. The general
relation between B and H is now:

B~ u(H) H

In some cases the better option, for numerical calculation, is to use the inverse
of . This is called magnetic reluctivity v:

v=£=v(B)
7,

To avoid the use of negative values of B, we can use a modified relation
between v and B>.

v =v(B?)
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For numerical stability this function must be continuous and differentiable. A
number of approximations are possible from polynomials to exponentials. A
popular selection is the cubic spline. This method gives piecewise cubic
polynomials that are continuous with continuous derivatives.

“Buese

The above figure shows the hysteresis loop for a magnetic material. The
discontinuous line shows the named normal magnetisation curve. For soft
magnetic materials, the hysteresis loop is narrow and this line is a good
approximation. For hard magnetic materials (permanent magnets) the treatment
is slightly different. The next section is dedicated to the modelling of permanent
magnets.

Permanent magnets (PM) modelling.

The development of high energy permanent magnet materials such as SmCo
and NdFeB has led to increased interest in the use of permanent magnet
material in electrical machines and actuators. As mentioned in the last section,
ferromagnetic materials are characterised by a narrow hysteresis loop. In
contrast, hard magnetic materials such as PM exhibit wide loops. It is often
acceptable to consider the magnetic characteristic of a PM by a straight line in
the second quadrant of the hysteresis loop. The intersection of the hysteresis
loop with the ordinate is called the residual or remanence flux density B, The
intersection of the abscissa and the loop is called the coercitive force
H¢. There are two possibilities for the modelling of a PM material:

e Magnetisation model
e Current sheet approach
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Although these two methods have a different starting point, they both result in
the same set of equations. Assuming a straight line as the characteristic of the
PM material, there are only two parameters required to define the characteristic:

e The slope of the line y,,
e The y-axis intercept B,

Magnetic vector model

The demagnetisation characteristic is defined by
B=4,-(L+ 1,) H+M)

where y,. is the magnetic susceptibility, M the magnetisation vector and H the
field strength at the operating point. In terms of the remanent flux density

Br =Ho- M
The incremental permeability, the slope of the demagnetisation characteristic is

B
= (1
G\H‘ /UO ( +Zm)

¥. 1S @ very small positive number so that the apparent permeability of the

magnet is only slightly larger than that of the free space. The reluctivity is
defined as

o
ﬂO (1+Zm)

y =
and applying this to the demagnetisation characteristic, yields
H=v-(B--M)
using the Maxwell equation for a magnetostatic problem:
VxH=1J
yields

Vx(v-B)=Jd+Vx(v-u, M)

The second term, the magnetic vector, on the right-hand side represents a
source term and can be identified as an equivalent magnetic current.
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Current sheet approach

The use of an equivalent current sheet representing the PM material is an easy
way to introduce the materials properties.

CICIC)
OJOIO

Taking the permeability of the iron core in the above figure to be infinite,
Ampere’s law yields

H 1 +H,-5=0

Ignoring fringing and corner effects, the flux density B is uniform and:

Im'|_|

B =—u, E

m

The intersection between the air gap characteristic, the load line, and the
demagnetisation curve represents the operating point of the system. For a lineal
magnet we have:

B, =B, -(1+ :"mjz B, + 1, -(1+ 7, )-H

c

B, =B, +uH

The PM can be represented by a current sheet with total ampere-turns

Again assuming an infinite permeability of the iron parts of the material core,

H, -l +H, 6=H_-I
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This yields
H C
Br

B=H

c

-B+ Vo - |5 .
All magnetic quantities outside the PM remain the same as in the case of the
magnetic vector, but are shifted to the first quadrant of the magnetisation

characteristic. This method is easy to implement for rectangular magnets with a
magnetisation parallel to two sides of the rectangle:

¢ Replace the magnet by a material of permeability z = E"r

e Add a thin current sheet along the two sides of the magnet to produce a
field in the direction of the magnetization. The linear current density
(A/m) must be equal to H, the coercitive force.

These ideas can be transferred to PM with an arbitrary shape. The current in
the sheet is given by:

Iab :_Hc 'rab Mg
where [, is a vector pointing in the direction of sheet current and whose
magnitude is the length of the edge. n, is a unity vector pointing in the

direction of magnetization.
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Analytical solution

Some important theorems

Two theorems are of fundamental importance in solving EM problems. These
are:

e Superposition principle. If each member of a set of functions ®_, n =
1,2,.....N, is a solution to the PDE L®=g with some prescribed
boundary conditions, then a linear combination

D=0, Jrian D,
n=1

also satisfies L® =g . Also we can divide the complex problem into a set

of reduced problems, which are easier to solve than the original problem.
The solution to the original problem is given by:

@:i@n
n=0

e Uniqueness theorem. This theorem guarantees that the solution
obtained for a PDE with some prescribed boundary conditions is the only
one possible. In a general way, a solution of V?U =0 is uniquely
determined by specifying either the value of U or the normal component
of VU (in the case of scalar potential) or the tangential component of
VxU (in the case of potential vector) at each point of the boundary
surface.

Analytical resolution. Separation of variables.

The method of separation of variables (sometimes called the Fourier's method)
iIs a conventional method for solving a partial differential equation. Basically, it
entails seeking a solution which breaks down into a product of functions, each
of which involves only one of the variables. For example, if we are seeking a
solution ®(x,y,z,t) to some PDE, we require that it has the product form:

D(x,y,z,t) = X(x)-Y(y)-Z(2) - T (1)

A solution of the form in the above equation is said to be separable in x, y, z,
and t.
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We begin the application of separation of variables by finding the product
solution of the homogeneous scalar wave equation

2
vch—lz-aatcfzo
C

Solution to Laplace’s equation can be derived as a special case of the wave
equation. Diffusion and heat equations can be handled in the same manner as
we will treat wave equation. To solve this equation, it is expedient that we first
separate the time dependence. We let

D(r,t) =D(r)-T(t)

Substituting this in the above equation:

T-vzu—iz-u-T"zo
C

dividing by U - T gives:

VU T

U ¢ T

the left side is independent of T, while the right side is independent of r; the
equality can be true only if each side is independent of both variables. If we let
an arbitrary constant —k* be the common value of the both sides, the equation
reduces to

VU +k*-U =0
T'"+c? k> T =0

Thus we have been able to separate the space variable r from the time variable
t. The arbitrary constant introduced in the course of the separation of variables
is called the separation constant. We shall see that in general the total
number of independent separation constants in a given problem is one less
than the number of independent variables involved. The second equation is an
ordinary differential equation with the general solution

T(t)=a,-e'** +a, el
Since the time dependence does not change with a coordinate system, the time
dependence expressed in the above equation is the same for all coordinate
systems. Therefore, we shall henceforth restrict our effort to seeking solution to
the first equation. Notice that if k = 0, the time dependence disappears and this
equation becomes Laplace’s equation.

To outline the method consider the Laplace’s equation in Cartesian coordinates
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o'd 'd 9D

ox? +8y2 T 0

The solution can be written as the product of three separate solutions:
D(x,y,2) = X(x)-Y(y)-Z(2)

where X(x) is only dependent on the x variable, Y(y) on the y variable and Z(z)
on the z variable. Substitution of the general solution into the original PDE and

dividing by X (x)-Y(y)-Z(z) gives
1 0@ 1 o®d 1 0
. . + . . + . 5 =0
X(x) ox° Y(y) oy Z(z) oz

In this form, each term depends on a single variable and, therefore, can be
separated. For the separation to be valid, each term must be equal to a
constant to be determined. The equation can be written as

1 '62d>__k2
X(x) ox? "
L_azm__kz
Y(y) oy* 7
i'ach__kz
Z(z) orz° ‘

where the three constants must satisfy

ki+k; +kZ=0

The following three differential equations are obtained:

2
(Z?+kf-X(x):0
X
o0*d
o T YO =0
2
‘2?+k3-2(z)=0
A

Now, the three equations are completely independent and can be solved
separately. Any combination of constants can be chosen, if the above equation
is satisfied. These constants must be selected for specific applications. For

example, we can assume that

k2 >0;k?>0 and k2 = —(kZ +k?2)
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The general solutions for X(x) and Y(y) are

X(x)=a,-e"" +a, et

Y(y)=a,-e™” +a,.e "
Therefore, because k’ = —(kf + k§)< 0 the general solution for Z(z) is:

kz“y

Z(z)=a, - +a,-e

where the constants a; to ag must be evaluated to obtain a particular solution.
These are evaluated from the boundary conditions of the problem. Any of the
constants a; can be zero, depending on the boundary conditions of the problem.
Finally, although the solution appears in terms of nine unknowns (a; to as, kx, ky,
k), only six unknowns are independent.

For example, consider a two-dimensional box defined by two parallel surfaces,
both semi-infinite in extent and both at zero potential. The lower surface is at
potential Vo. Also, the potential at infinity is zero. Calculate the potential
everywhere in the channel so defined. For two dimensional analysis, we can
show that:

2 2 2
ky =—k; =—k
The general solution is:

V(x,y) =(a,-sin(k-x)+a, -cos(k - x))-(b1 .e"Y +b, -e"“y)

For the solution in the y direction, we use
the exponential form. This is because we
anticipate using values of y that tend to
infinity. For such values, exponential
forms are more convenient than the
hyperbolic forms. To satisfy the boundary
conditions, we write:

Atx=0  V(0,y)=(a,)-(b,-€*" +b,-e*)=0=>a,=0

Atx=a
V(a,y)=(a,-sin(k-a))-(o,-e*’ +b,-e™*)=0=a, -sin(k-a)=0
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This gives:
k-a:m-fr:k:M
a

where m is any integer, including zero. We will, however, exclude m=0 from the
solution because it leads to k = 0 and a linear solution fo the form

Ax+b
Similarly, the negative values of m need not be considered because negative m

will only change the sign of the solution. The general solution at this stage looks
like:

m-z

At y=oo:>V(x,oo)=[a1~sin[Tr-XD-[b1'eam]=0:>b1 =0

The solution at this stage is:

V(xy)=C -(sin(ma'l” . XD(GVJ

C=a-b,

Aty = 0 V(x,0) = Vy; to satisfy this condition, we cannot simply substitute y = 0
in the general solution. If we did, the solution would be sinusoidal in the x
direction and no constant C can satisfy the boundary condition. However, the
solution may also be written as a superposition of solutions of the above form.
We write

V(X y)= Zcm e a ~sin(m'ﬂ-xj
m=1

a

Now, we substitute y = O:

V(x,0)=V, = Zcm -sin(rna'l”- Xj

m=1

The latter form is a Fourier sin series which, in effect, approximates the pulse
V(x,0) = Vp, 0<x<a, by an infinite series. In this sense, C, are the amplitude
of the coefficients of the series. To obtain C,, we multiply both sides by
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sin[ p-ﬂ-xj , Where p is an integer, and integrate both sides from zero to a. This
a

is a general technique we will use again and was developed by Fourier himself:

a a
= ircm -sin(m'”-xj-sin( p-7: Xj-dx
mo1"° a a

where the integration and the sum are interchanged. Each side of the relation is
integrated separately. The left hand side gives

2:2Vo for pem
J.Oavo.sin(p:'xj-dx: P b=
0 for p=m

a, . (P-7-X N . (m-z . (P-m-X 3
jovo-sm[ . j-dx_L;Cm-sm[-xj-sm[ j-dx_

For the right hand side, we integrate each integral in the sum. For any value of
m, we get

a m- X 3Cn forp=m
J‘Cm-sin(ﬁ-xj-sin[p” j-dx= 2 P=
0 a a
0 for p=m

To satisfy both conditions above, m must be odd and p = m. Any other value
yields zero. Thus:

If we substitute this in the general solution, we obtain the general solution inside
the box:
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The following tables resumes the general solutions of Laplace’s equation in

different coordinate systems.

Cartesian 82U 62U aZU

coordinates 72 =0
X(x)= e”‘ *ta,-e’*=a'sen(k, -x)+a,-cos(k, -x) k #0
a,-X+a, k, =
Y (V)= 1 1
) " b, e Y = b sen(k, - y) +b',-cos(k, - y) Kk, %0
b -y+bh, k, =
2(2)= ’+c,-e " =c'-senh(k, - zy) +c',-cosh(k,-z) k,#0
C,-y+¢C, kz =
Cylindrical | 1 ¢ ( ou) 1 &% azu
coordinates *'a o +rz of T
Z(2)= 2 ¢, -e % =¢'-senh(k, - zy) +¢',-cosh(k, - z) k=0
C,-Y+C, k=0
D(¢) = b, -sen(n-y)+h,-cos(n-y) n=0
b, -¢+Db, n=0
R(r) = c,-J,(k-r)+c,-Y, (k-r) k0
c,-r'+c,-r k=0 and n=#0
c,-In(r)+c,) k=0 and n=0

© R. Bargall6. ELECTRICAL ENGINEERING DEPARTAMENT. EUETIB-UPC

70f32




EINITE ELEMENTS FOR ELECTRICAL ENGINEERING ANALYTICAL RESOLUTION

Spherical 1 6(, oU 1 o (. oU 1 U
coordnates | (7 T 1+ iy 30l G o i
R(r) = C, I+, r™n=012,..

®(0) = b, - P, (cos(8)) +b, -Q, (cos(8))

Other examples

Consider the skin effect on a solid cylindrical conductor. The current density
distribution within a good conducting wire obeys the diffusion equation

Vil=uyo —
P

We want to solve this equation for a long conducting wire of radius a. Assume
harmonic field, i.e. J = A(r,¢,z)-e"*, thus

Vi=j-u-oc-d

For infinitely long wire, the above equation reduces to a one dimensional
problem in cylindrical coordinates:

Lof,2

- r7='...\]
r or 8rj A

This equation is a modified Bessel equation of zero order. Hence the solution is
J=c - ly(A-r)+c,-Ky(A-1)

where
— = 42

A=
0= 2
w-o-U

o is the skin depth. Constant c; must vanish if J is to be finite atr = 0. Atr=a

J(a)zcl"o(/l'a)iclﬂJ(ia.)a)
Thus
_ J@ .
J(r)= | (i-a) lo,(A-1)
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Skin effect on a plane infinite conductor

We can suppose a plane conductor inside of a magnetic field. This field has
periodic and sinusoidal. This conductor is rectilinear and is extends to infinity in
x coordinate. The Maxwell's equations for this case are:

and with the constitutive relations:

<l ml

[
Q0w
ml I

The solutions are:

H(xt) = H(t)-e™"
J(x,t)=J(t)-e'"

Applying the curl operator:
VxVxH=VxJ

and substituting Ohm'’s law:
VxVxH =Vx(a- E)
and applying the following vector identity, and Gauss’s theorem:
VxVxH=V(V.-H|-vH

V-B=0;V(u-H)=p-v[H)=0
we can obtain:
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oH
VZH :O‘ PR
"o

In this case, only the x dimension is considered

d*H . =
dX2 —j-G-C()-,U'H :0

The general solution is:

or

X

o e_(gj, is an attenuation term; The field decreases with x. For x=6 the
field is reduced by a factor e™.
j| ot—
e ¢ ( ‘J, is a propagation factor.

We can obtain a similar expression for the density of current in the conductor

with

The current density is greater on the surface of conductor than inside the
conductor. For example in a copper conductor in a 50 Hz field the skin depth is
(6 = 56-10° S:m):

5= |2 =\/ S ~951.10°m ~9.5mm
p-o-@ 47107 .56.10°-27-50

nearto 1l cm.
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Open Rectangular slot. Full conductor

The following figure shows an open rectangular slot with a one piece conductor.
This slot has a height of h (m) and a width of b (m). We consider that b << h.
The general solution is

o1 sh(r-y)
b sh(y-h)
joy.2.h(ry)

b sh(y-h)
y = J iy o
Yo,

To calculate the electric resistance and
inductance we first determine the voltage drop
along the bar.

To begin with, we calculate the difference of electric potential along the bar:

Vg =

O ey

L
y o .ch(y-y)
! b " sh(y )

Second, we calculate the e.m.f. due to the time variation of linked flux. The flux
linked at the “y” coordinate is:

0y 0y 0y

b sh(y-h)
I .ch(y-h)—ch(y-y)

O(y) = u, -
(Y) = 1 b sh(y -h)
The e.m.f. is:
VL:8<D(y)
ot
V=] o o(y)
: I ch(y-h)—ch(y-y)
V = i-w u - -
L= 10 Ky b sh(y -h)

The total voltage drop is:
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Vbar :Vr+VL
Vbar=p~|~Z~L-Ch(7/'y)+j~a)-yo- I ,L_Ch(V'h)—Ch(J/'Y)
b sh(y-h) 7-b sh(y -h)

and using:

Ja)ﬂo_Jwﬂo_ /
/J/Jo

we can obtain

v (.7 .ch(y-h)

bar — £ b Sh(}/h)

The impedance of a slot-bar is determined as

Zbarra :Vbarra :,DZ L- Ch(j/h)
I b sh(y -h)
The D.C. resistance is simply:
L
Roc = p'b-_h
and
ch(y-h)
Z. =R_. -(v-h)-
bar DC (7 ) Sh(}/h)

Expanding real and imaginary parts we can write:

h h
h sh(2-a)+sen(2-a)

RAC:RDC'_'
) h h
ch(2-—)-cos(2-—
( OI) ( OI)
h sh(Z-D)—sen(Z-E)
X R H d d
AC DC 5

h h
ch(2-—)+cos(2-—
( OI)+ ( d)

the following figure shows the resistance, inductance and reactance variation as

a function of the a dimensional parameter —

e Resistance grows with the frequency.
¢ Inductance decays with the frequency.
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4,5

3,5

25 ~

15 /

RAC === X3C | ac

Some useful approximations

a) If §<1.5 we can write:

4 (n) 16 (hY
Ry =Rpe |14 — | = ———| =] +...
Ae o ee { 45 (5] 4725 (5) }

2 (h) 8 (h) 32
X === R J1——. =] + .
A3 (5) = { 315 (5) 31185

o]

-

and
2 2
E(ﬂj R -2 AN pi=a)'u——h|_ w-L
316 3 V2p b-h 3 b be
My, h-L
RS
8 (h)" 32
X = -L .1__._ +—._
po =@ DC{ 315 (5} 31185(
b)IfE>>>
5
h
RAC:RDC'E
h 3 ¢
XAc:RDc'g:E'w'F'LDC
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Electric machines modelling

Field Description of Energy Flow: Poynting's Theorem

Start with Faraday’s and Ampere laws:

V><E=—§g
ot

VxH=1J
multiplying the first of these by H and the second by E and taking the difference:

H.-VxE-E-VxH :V-(ExH):—Hg?—J-E

VxH=1J
On the left of this expression is the divergence of electromagnetic energy flow:
S=ExH

Here, S is the celebrated Poynting flow which describes power in an
electromagnetic field system. (The unit of this quantity is watts per square meter
in the International System). On the right hand side are two terms:

_H.@_J.E
ot

The first term is the rate of change of magnetic stored energy. The second
term, represents like power dissipation. We will discuss each of these in more
detail. For the moment, however, note that the divergence theorem of vector

calculus yields:
[[[v-s-dv ={fs-n-dA

Vol

that is, the volume integral of the divergence of the Poynting energy flow is the
same as the Poynting energy flow over the surface of the volume in question.
This integral becomes:

j‘:fs-n.dA=—Hj(H -%?+J -E)dv

Vol

which is simply a realization that the total energy flow into a region of space is
the same as the volume integral over that region of the rate of change of energy
stored plus the term that looks like dissipation. Before we close this, note that, if
there is motion of any material within the system, we can use the empirical
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expression for transformation of electric field between observers moving with
respect to each other. Here the 'primed' frame is moving with respect to the
‘'unprimed’ frame with the velocity v:

E'=E+vxB

This transformation describes, for example, the motion of a charged particle
such as an electron under the influence of both electric and magnetic fields.
Now, if we assume that there is material motion in the system we are observing
and if we assign v to be the velocity of that material, so that E’ is measured in a
frame in which there is no material motion (that is the frame of the material
itself), the product of electric field and current density becomes:

J-E=(E'-vxB)-J=E"J-vxB-J=E-J+v-JxB

In the last step we used the fact that in a scalar triple product the order of the
scalar (dot) and vector (cross) products can be interchanged and that reversing
the order of terms in a vector (cross) product simply changes the sign of that
product. Now we have a ready interpretation for what we have calculated:

If the 'primed’ coordinate system is actually the frame of material motion,
E'J= 1 J?
O

which is easily seen to be dissipation and is positively defined if material
conductivity o is positive. The last term is obviously conversion of energy from
electromagnetic to mechanical form:

v-JxB=vVv-F
where we have now identified force density to be:
F=JxB

This is the Lorentz Force Law, which describes the interaction of current with
magnetic field to produce force. It is not, however, the complete story of force
production in electromechanical systems. As we learned earlier, changes in
geometry which affect magnetic stored energy can also produce force.
Fortunately, a complete description of electromechanical force is possible using
only magnetic fields and that is the topic of our next section.

Field Description of Forces: Maxwell Stress Tensor

Forces of electromagnetic origin, because they are transferred by electric and
magnetic fields, are the result of those fields and may be calculated once the
fields are known. In fact, if a surface can be established that fully encases a
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material body, the force on that body can be shown to be the integral of force
density, or traction over that surface. The traction z derived by taking the cross
product of surface current density and flux density on the air-gap surface of a
machine (above) actually makes sense in view of the empirically derived
Lorentz Force Law:

Substituting the Maxwell’s equations in the Lorenz force expression:

VxH:J:EVxBZVVxB:J
7,

we obtain:
f = (VV X B)x B

Developing this equation, we obtain the following equation (we only show the
equation for X — component):

oB
f,=v BZaBX—BZaBZ—By y+ByaBX
0z OX OX oy

If a term B, aaBX is added and subtracted from the above equation, and the
X

identity

0B,
OX

0
&(Bf)ZZBX

is used, then the force component becomes:

10 oB B, 10
f, =v(28x(55)+ B, 1 +B, ayx _E&(Bf +B? + Bf)j

Some further manipulations gives:

o(B,B
f =V(§[Bf—282j+a(Bsz)+ (B, y)_B V~BJ:>(V-B=O)
X

X oz 6’y X
o(B.B
f=v 5(55_152j+5(8x82)+ (8.5,)
OX 2 oz oy

The remaining expression may be recognized as the divergence of a vector fy,
whose components are:
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oT, _ P =V(BX2—1sz
OX 2

V'Tx = a;;/x = fxy :V(BXBZ)
oT

*=f =v(B,B
oz xz ( X y)

A similar development holds for each of the other force components (f, and f,).
Thus these vectors can be combined into a Tensor T:

(sz_;sz (BxBy) (Bsz)

T=v| (B,B,) (Bj—zszj (B,B,)

®e)  @©8) [8i-18

The force density can now be written as the divergence of this tensor:
f=V.T

The total force can be found by integration over the volume:

F=ijde=jijv.Tdv

Using the divergence theorem, this volume integral may be reduced to a
surface integral:

F= jvjjv TdV = £§Tds

We limit the following development to two dimensional geometry, so that the
surface of integration is a line (we consider a unit depth). The unit normal and
tangential vectors to the surface are:

a, =s,d, +5,d,
a, =s,d, —s,d,

The incremental integration path is then: ds=4&,dl where dl is a differential
length along the integration path. The incremental force is now:
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f=T-ds

1 2
B —|B| j (B.B,) _
( 2 )[ Sdel

f=v 1 ‘
2
(B,B,) (Bi —E\B\ "

The tangential and normal component are:

f.=f.a =v-di((B,B,)(s? —s2)+s,s, (B - B?))

X

XYy TXTy

fo=toa,=v-dBis) Bt L B 28,855,

The tangential and normal components of the flux density are:

B, =B,s, +B,s,

B, =-B,s, +B,s,
Substituting and some after algebraic manipulations, we can write:
f. =v(B,B, )l

f= ;V(an ~ B2l
The torque on an arc of radius r is given by:

M =v[B,Br-di

Example: Linear Induction Machine

The following figure shows a highly simplified picture of a single sided linear
induction motor. This is not how most linear induction machines are actually
built, but it is possible to show through symmetry arguments that the analysis
we can carry out here is actually valid for other machines of this class. This
machine consists of a stator (the upper surface) which is represented as a
surface current on the surface of a highly permeable region. The moving
element consists of a thin layer of conducting material on the surface of a highly
permeable region.
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d KZ
l M / y
JE— . u
[T
K
Gs <

The moving element (or 'shuttle’) has a velocity u with respect to the stator and
that motion is in the x direction. The stator surface current density is assumed to
be:

K, =Re(K, -e*™*))
Note that we are ignoring some important effects, such as those arising from
finite length of the stator and of the shuttle. Such effects can be quite important,
but we will leave those until later, as they are what make linear motors
interesting. Viewed from the shuttle for which the dimension in the direction of
motion is x’- x- ut’, the relative frequency is:
wt —kx = (@ —Kku )t —kx'= ot —kx'
Now, since the shuttle surface can support a surface current and is excited by

magnetic fields which are in turn excited by the stator currents, it is reasonable
to assume that the form of the rotor current is the same as that of the stator:

K, =Re(K, -e/+)

Ampere's Law is, in this situation:

which is, in complex amplitudes:

The y- component of Faraday's Law is as follows, assuming the problem is
uniform in the z- direction:
~j-o,-B,=j-k-E

' 23
Ez—?-,u-Hy
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A bit of algebraic manipulation yields expressions for the complex amplitudes of
rotor surface current and gap magnetic field:

_j.ﬂova)suo-s
Ko Ko
1+J'ﬂl22.a)s.o-s
g
e
_ k-9
Hy_ j'luo'a)s'o-s.KZ
g

To find surface traction, the Maxwell Stress Tensor can be evaluated at a
surface just below the stator (on this surface the x- directed magnetic field is
simply Hy = K,. Thus the traction is

and the average of this is:

That is:
,uo-a)s-as
My 1 k’-g 2
T,)= K
“ e e !
k?.g

Now, if we consider electromagnetic power flow (Poynting's Theorem): in the y-
direction:

S, =E,-H

y z X

And since in the frame of the shuttle E,’ :—%-yo ‘H,

/uo'a)s'o-s
' 1 s Hy k2 g 2 @
S =——. 5. K =——5.
< y> 2 k k-g Y- 0,0, 2‘ Z‘ K <7x>
1+ %R
9

Similarly, evaluated in the frame of the stator:
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This shows what we already suspected: the electromagnetic power flow from
the stator is the force density on the shuttle times the wave velocity. The
electromagnetic power flow into the shuttle is the same force density times the
'slip’ velocity. The difference between these two is the power converted to
mechanical form and it is the force density times the shuttle velocity.

Rotating Machines

The use of this formulation in rotating machines is a bit tricky because, at least
formally, directional vectors must have constant identity if an integral of forces is
to become a total force. In cylindrical coordinates, of course, the directional
vectors are not of constant identity. However, with care and understanding of
the direction of traction and how it is integrated we can make use of the Maxwell
Stress Tensor (MST) approach in rotating electric machines. Now, if we go back
to the case of a circular cylinder and are interested in torque, it is pretty clear
that we can compute the circumferential force by noting that the normal vector
to the cylinder is just the radial unit vector, and then the circumferential traction
must simply be:

T¢=ﬂ0.Hr.H¢

Assuming that there are no fluxes inside the surface of the rotor, simply
integrating this over the surface gives azimuthal force. In principal this is the
same as surrounding the surface of the rotor by a continuum of infinitely small
boxes, one surface just outside the rotor and with a normal facing outward, the
other surface just inside with normal facing inward. (Of course the MST is zero
on this inner surface). Then multiplying by radius (moment arm) gives torque.
The last step is to note that, if the rotor is made of highly permeable material,
the azimuthal magnetic field just outside the rotor is equal to surface current
density.

Generalization to Continuous Media

Now, consider a system with not just a multiplicity of circuits but a continuum of
current-carrying paths. In that case we could identify the co-energy as:

W, '= Hl(a)-dJ-da

area

where that area is chosen to cut all of the current carrying conductors. This area
can be picked to be perpendicular to each of the current filaments since the
divergence of current is zero. The flux A is calculated over a path that coincides
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with each current filament (such paths exist since current has zero divergence).
Then the flux is:

Aa)=[[B-dn

Now, if we use the vector potential, the flux linked by any one of the current
filaments is:

/l(a):§A-dI

where dl is the path around the current filament. This implies directly that the
co-energy is:

W,'= [ [fA-dl-dJ-da

area J

Now: it is possible to make dl coincide with da and be parallel to the current
filaments, so that:

w,'= [[[A-dJ-dv

vol

For linear continuous media we can write:

W, :Wm':;I”A-J Y

Vol
Permanent Magnets
Permanent magnets are becoming an even more important element in electric
machine systems. Often systems with permanent magnets are approached in a
relatively ad-hoc way and made equivalent to a current that produces the same
MMF as the magnet itself. The constitutive relationship for a permanent magnet

relates the magnetic flux density B to magnetic field H and the property of the
magnet itself, the magnetization M,

B:,uo'(H"'M)

Now, the effect of the magnetization is to act as if there were a current with
density:

J*=VxM

Note that this current “acts” just like ordinary current in making magnetic flux
density. Magnetic co-energy is:
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W, '= [[[A-VxdM -dv

vol
Next note the vector identity:
V-(CxD)=D-(VxC)-C-(VxD)
Now,

W, '= [[[-V-(AxdM )dV + [[[(V < A)-dMdV =

=—ff(AxdM)-ds + [[[B-dMdV

vol

The first of these integrals (closed surface) vanishes if it is taken over a surface
just outside the magnet, where M is zero. Thus the magnetic co-energy in a
system with only a permanent magnet source is

Wm'zjvlljs-dlvldv

Adding current carrying coils to such a system is done in the obvious way.

Some examples

Application. Consider the
following picture. The ‘machine’
consists of a cylindrical rotor and a
cylindrical stator which are coaxial
and which have sinusoidal current
distributions on their surfaces: the
outer surface of the rotor and the
inner surface of the stator.

The ‘rotor’ and ‘stator’ bodies are
made of highly permeable material
(we approximate this as being
infinite for the time being, but this is
something that needs to be looked
at carefully later). We also assume that the rotor and stator have current
distributions that are axially (z) directed and sinusoidal:

K3 =K, -cos(pg)
K = K, -cos(n(¢ - a))
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Here, the angle ¢ is the physical angle of the rotor. Due to the symmetry, the z
component does not exist. Poisson’s equation’s for this case is:

The general solution of this equation is:

A(r,9) = Z(bm -sen(m-¢) +a, -cos(m- y))-(cm " +d -r‘m)

The boundary conditions for tangential magnetic field intensity are:

r=R =H,=0
r=R,=H,=-J

The tangential value are calculated as:

Ho=—— = =3 (b, -sen(m-g) +a,, -cos(m-y))-m-(c, - r™* +d,, -r ™)

For each boundary:

H)ps, == 3 (b, -sen(m-¢)+a, -cos(m- y))-m-(c,, -R" +d,, -R,™*)=0

0 m

ol ::'Z(bm sen(m-g)-+a, -cos(m-y))-m-(e, -R," +d, R, )=
0 m

where J is the current density. If m= p we can write:

(cm R +d -Rl’m’l):0:> c,=d. =0

andif m=p

1 —. —pD—
Ht)r:R2 Z—-(bp .Sen(p-(ﬁ)+ap -Cos(p-y))- p.(cp,RZP 1+dp-R2 p 1):J

Ho

The solutions of this system of equations are:
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b, =1
a,=0
X:&S C _/uO"]max‘ 12 . 11
R, P P (1—x "’) R)™
luo"Jmax l 2. +1
d = . .X p.Rp
P p (1-x*") ?

which Jmax is the peak value of current density. The complete solutions resulting
from both density currents are obtained by applying the superposition theorem:

K 1 " x> .RM
A(ra¢’KzS’KzR):lqu S'(l_xz'p)'(Rzp—l—i_ rp2 j‘COS(p-¢)+

n n+l
lUO KR 1 (in . rn71 n Rzn jCOS(n . (¢_a))
R, r

The magnetic field density is:

g 1 OA
r o¢
5, =
or

R p-1 r p+1
2

Kg (rPt xPP.RYY
Br(l’,¢,Kg,KzFe):—(lﬂixzi)( + 2 j‘sm(p‘(é)—

/«lO'KR ( o rn—l Rn+1

m . RI + ri” J-sin(n-(qﬁ—a))

Ky (rPt x*P.RPH
B¢(rl¢aKZS’KZR):_(fixz.s)'( : J'Cos(p'¢)_

R p-1 - r p+l
2

Lo - K 2n r* R;H
o X — -cos(n-(¢p—a
m ( R;_l rn+;|_ ( (¢ ))
the magnetic field energy is calculated as:

Wm:;j”A-J-dV

Vol

in this case the differential volume element is:

© R. Bargall6. ELECTRICAL ENGINEERING DEPARTAMENT. EUETIB-UPC 25 of 32




EINITE ELEMENTS FOR ELECTRICAL ENGINEERING ANALYTICAL RESOLUTION

dV =r-dr-d¢-dz

The integration in z direction is simply the longitude L of the machine: only is
necessary to integrate in r and in ¢ coordinates:

W, :;U.[A-J -dV :-;ITA-J r-dr-dg-L=

:; _f[A(r =R,)- KZR] R, -d¢+; f[A(r =R,)-K; ] R,-d¢
A ot K B oo -

Ky R, -(x*"+1 ‘K, 2-xn-R
A(Rz):luop > 2(1£X2.p) ).Cos(p_¢)+ﬂon o (1_X2.nj

ARR,) =40

-cos(n- (¢ —))

Substituting and integrating yields (all of the integrals are of the type
cos(pd)-sin(nd) and these are different to zero only if p = n):

W, :%-L-{(KZR-R12+Kzs-Rf)-(1+x2p)+2-R1-R2-KS-KR (2-x?)-cos(p-¢)}

The torque is obtained by derivation of the magnetic energy:

M=-

an_IUO.ﬂ., . . . A2-xP).gj .
¢ _(l—xzp) {Rl R,-L-K,-Kg (2 X )sm(p ¢)}

If x=1-&=x*"=1-2-n-¢ and neglecting & we can write:

M =/§‘ﬂ'{R1'Rz'L'Ks'KR'Sin(p'¢)}
&

The same result can be obtained by use of the Maxwell Tensor:

1
t,=u,-H -H,=—B,-B
¢ 0 ¢ m ¢
2 27[1
M=[z,-rdg=[—-B, B, r-dg
'([¢ !:“o ’

Finally we can calculate the torque by using Laplace’s law:

dF =di-I-B,
dM =R, -dF

the current is:
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di=J-R,-dg¢
Finally the elemental torque is:
dM =R?%*-L-B,(R,)-J-d¢

Integrating we can obtain the same value calculated by using magnetic energy.

Application. Permanent magnet field analysis

The assumed geometry is shown in the following figure. Assumed iron
boundaries are at radii R and Rs. The permanent magnets, assumed to be
polarized radially and alternately, are located between radii R; and R,. We
assume there are p pole pairs and that each magnet subsumes an electrical
angle 6., . The electrical angle is just p times the physical angle.

Magnets

Inner Magnetic
Boundary

If the magnets are arranged so that the radially polarized magnets are located
around the azimuthal origin (¢=0), the fundamental harmonic of space

magnetization is:
M, =M, -cos(pg)

where the fundamental magnitude is:

1,24 B 024 B 70
T Hy 2 T Hy 2

Since there is no current anywhere in this problem, it is convenient to treat the
magnetic field as the gradient of a scalar potential:

H=-Vy
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The divergence of this is:
Viy =-V-H
Since magnetic flux density is divergence free (V-B=0), we have:

V-H=-V-M
or

Vzl//:—V‘H =V-M =:|I:'M0'C05(p'¢)

Now, if we let the magnetic scalar potential be the sum of particular and
homogeneous parts:

lr//:lr//p+!//h
Viy, =0

1
Ve, =M -cos(p-g)

We can find a suitable solution to the particular part of this in the region of
magnetization by using:

v, =C-1" cos(py)

Carrying out the Laplacian calculation on this:
2 -2 2 2 1
Vi, =C-r7 (%~ p?)-cos(pg) =My -cos(p-¢)
which works if ¥ =1, in which case:

% 7—50'! -cos(pg)
P l— p
Of course this solution holds only for the region of the magnets (R, <r<R,),
and is zero for the regions outside of the magnets. A suitable homogeneous
solution satisfies Laplace’s equation
Viy, =0
and is in general of the form:

w, =A-r?.cos(pg)+B-r " -cos(pg)

then we may write a trial total solution for he flux density as:
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R <r<R, w=A r’-cos(pg)+B,-r"-cos(pg)
R,<r<R, w=A,-r".cos(pg)+B,-r° -cos(p¢)+(l\/|_°—é£)-cos(p¢)
R, <r <R, w=~A-r"-cos(pg)+B,;-r"-cos(pg)

The boundary conditions are the following:

e at the inner and outer boundaries at r = R; and r = Rs require that the
azimuthal field vanishes, or v =0.

e Atthe magnet inner and outer radii, H, and Br must be continuous:

After some algebraic transformations, we can obtain:

M 1 -1
Al:_2,(R52r>O_R_Zp)'(ppztl'(Rll_p—Ré_p)'RSZp+ pz _1'(R%+p_R11+p)J
As=—2_(RSzpiRizp)'(l_p-(Rfp—R;P)- RfP_M.(R;*p—thp)]

B, =-R®-A
B,=-R"-A
w=A-(P~R¥ .r?).cos(pg) r<R,
l//=A3'(rp—R§p.r‘p)-cos(p¢) r>R,
and:
r<R,
M - ~ + + - _p—
H, = 2.(R§piRi2p).£p[il.(Rll p_R% P).RSZP +1_|_pp'(R; P_Rll P)].(rp 1+Ri2p-r p l)-COS(p¢)
r>R,

M
A= 2-(Re” in")'( pgl'(Rll_p ~R)RE +1+pp'(R§+p _thp)]'(”’” RZ” 1" )-cos(pg)

The case of p = 1 appears to be a bit troublesome here, but this is easily
handled by noting that:
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. _ _ R
lim—P— 1-(R11 P_RIP)= In[RZJ

P>l p— 1
Special cases.

e Iron free case, R, - 0,R, — «, this becomes:

_Mo [P (gre_Rgre)|.(re).
H, = 5 (p—l (R1 R; )] (r )cos(p¢)

M R
forp=1H =—2.In —% |-cos
p = [RJ (p9)

1
r>R,

_Mo [P (e _pre)](pop),
H, = 5 (1+p (R2 R, )J (r )cos(p¢)

e Machines with iron boundaries and windings in slots. We are interested
in the fields at the boundaries. In such a case, usually, either: R; = Ry or
Rs = R». The fields are:

r=Rq

— MO'RSp& .
N R R (

SRR PR RE —R;p)]-costp«»

H = Mo‘Risrk1 ( p

r = Z(RSZp - Rizp). p_l.(Rll‘p _ R;‘P). Rsp _|_1+pp,(R;+p _ R11+D)J'COS(D¢)

and the magnetic field density is:

r=Rq

M, RS
RE® —R")

B, =1, - My -k, -cos(pg)

RP - gt
) B8R PR )

B, =so-H, =14 ( p?—l.(Rzpﬂ - R1p+l)+pp_1' Rizp(Rll_p - R;_D)J'COS( P#)

kg is a geometric factor that describes the geometry of the magnetic gap. The
above case is valid for magnets inside and p #1. For magnets inside and p = 1,

1 1

R
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For the case of magnets outside and p #1:

R'p_l + + = =
g s 2 )

and for magnets outside and p = 1:

1 1

Note that for the case of a small gap, in which both the physical gap g and the
magnet thickness h,, are both much less than rotor radius, it is straightforward
to show that all of the above expressions approach what one would calculate
using a simple, one dimensional model for the permanent magnet:

h

m

k ——"—
h,+0

9

And this is the whole story for the winding in slot, narrow air gap, surface
magnet machine.

Flux

The flux linked by a single, full pitched coil which spans an angle from zero to

zlp is:

cD=§A-d|=LZBr-r-L-d¢

If we consider that B, is sinusoidal distributed this will have a peak value of:

chZZ-R-L-Br
p

Now if the actual winding has N, turns and using the pitch and breadth factors,
the total flux linked is simply:

_2.R-L:B,
p

N, -k

a w

A
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N
.

a7

SIn——

K, :72‘_)7:2774)
q.Sian}/ K

Where N, is the coil span (in slots), K is the total number of slots in the stator
and g is the number of slots by phase and pole.
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NUMERICAL SOLUTION:
FUNDAMENTALS AND BASIC METHODS

General concepts

Frequently, a direct analytic solution of PDE is possible only for simple cases or under very
restrictive assumptions. For the solution of detailed and realistic models, numerical
methods are often the only alternative available. The goal of this chapter is to introduce a
number of methods and simple examples, to familiarize the reader with numerical and
practical issues in the solution of PDE's.

The main objective of a numerical method is to solve a PDE on a discrete set of points of
the solution domain, called discretization. In order to do so, the solution domain is divided
into subdomains having the discretization points as vertices. The distance between two
adjacent vertices is the mesh size. Time is also subdivided into discrete intervals, and we
call timestep the interval between two consecutive times at which the solution is obtained.
The PDE is then approximated, or discretized, to obtain a system of algebraic equations,
where the unknowns are the solution values at the discretization points. This system of
algebraic equations can then be solved on a computer by direct or iterative techniques. It
is important to realize that the discretization step replaces the original equation with a new
one, and that even an exact solution of the discretized problem will yield an approximate
solution of the original PDE, since we introduce a discretization error.

Classification of electromagnetic (EM) problems

EM problems are classified in terms of the equations describing them. The equations could
be differential or integral or both. Most EM problems can be stated in terms of an operator
equation

Ldb=g
where L is an operator (differential, integral, or integro-differential), g is the known source,

and @ is the unknown function to be determined. For example in the electrostatic problem
involving Poisson’s equation:

vy =P
&

So that
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L=-V?

g="~
&

D=V

As observed before, EM problems involve linear second order partial differential equations.
In general, a second order partial differential equations (PDE) is given by (2D formulation):

o’d L oD o'Dd od oD
a—_, +b +C_,+d—+e_—+fd=g
OX 0YyOoX oy OX oy

The coefficients a, b, and c in general are functions of x and y; they may also depend on
@ itself, in which case the PDE is said to be nonlinear. A PDE in which g is equals to
zero is termed homogeneous; it is inhomogeneous if g #0.

A PDE in general can have both boundary values and initial values. PDEs whose
boundary conditions are specified are called steady-state equations. If only initial values
are specified, they are called transient equations.

Any linear second order PDE can be classified as elliptic, hyperbolic, or parabolic
depending on the coefficients a, b, and c. The above equation is said to be:

e elliptic if b*>-4.a-c<0
e hyperbolicif b®-4-a-¢>0
e parabolicif b*-4.a-c=0

Elliptic equations are associated with steady-state phenomena, i.e., boundary value
problems. Typical examples of this type of equation include Laplace’s and Poisson’s
equations:

ViA=—u-]
ViA=0

Hyperbolic PDE arise in propagation problems. A typical example is the wave equation:

oV

VZV_ £ —
He o

Parabolic PDEs are generally associated with problems in which the quantity of interest
varies slowly in comparison with the random motions which produce the variations. The
most common parabolic PDE is the diffusion or heat equation:
0A
VIA-u-oc-—=—pu-J
H ot H

VZT_E.QZ_Q
A ot A

Another type of problem is called eigenvalue. The standard eigenproblem is of the form:
LD = AD
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A more general version is the generalized eigenproblem having the form:
LD = AMD

where M, like L, is a linear operator for EM problems. In this equation only some particular
values of 1 called eigenvalues are valid; associated with these values are the
corresponding functions @& called eigenfunctions. Eigenproblems are usually
encountered in vibration and waveguide problems where the eigenvalues correspond to
physical quantities such as resonance and cut-off frequencies, respectively.

Many equations of practical importance may be of a mixed type, or not easily identifiable
according to one of the above categories. Nevertheless, the distinction between elliptic,
parabolic, and hyperbolic equations provides a very useful guideline for the selection of
solution procedures.

There are many approaches which are used for the discretization of the original PDE to
obtain a numerical problem. The most important discretization approaches can be
classified as

e Finite Differences ¢ Moment’s method
e Finite Elements e Monte Carlo method
e Boundary elements e Other methods

In the following pages we explain the formulation of the Finite Differences method and thus
we explain the Variational principles, that are common to the Finite elements, Boundary
elements and Moment’'s methods. Before this common introduction we explain about the
formulation of each method. Finally we present the Montecarlo method that is an non-
deterministic method.

After discretization, it is necessary to check if the approximation is appropriate or if the
discretized model can produce a solution at all when programmed into a computer code.
For a successful solution, the numerical scheme must be stable, convergent and
consistent.

e The scheme is stable if the solution stays bounded during the solution procedure.

e The scheme is convergent if the numerical solution tends to the real solution as the
mesh size and the time-step tend to zero.

e The scheme is consistent if the truncation error tends to zero as the mesh size and
the time-step tend to zero.

If a numerical scheme is consistent, then stability is a necessary and sufficient condition to
achieve convergence. A scheme which is stable but not consistent may converge to a
solution of a different equation (with which it is consistent). A number of errors are
introduced when a PDE is discretized and solved numerically. To summarize, we have:

e Truncation error - the error introduced by the finite approximation of the derivatives.

e Discretization error - the error in the solution due to the replacement of the
continuous equation with a discretized one.

e Round-off error - the computational error introduced by digital algorithms, due to the
finite number of digits used in the numerical representation.
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The round-off error is random, and normally increases when the mesh size is decreased.
Conversely, the discretization error decreases with the mesh size, since more mesh points
(i.e. more resolution) are introduced.

Finite Differences

The finite difference approach is the most popular discretization technique, owing to its
simplicity. Finite difference approximations of derivatives are obtained by using truncated
Taylor series. Consider the following Taylor expansions

u(x+Ax) =u(x) +AX-ZU+O(AX)
X

u(x—Ax) =u(x) —Ax-a—u+O(Ax)
OX

The first order derivative is given by the following approximations:

e Forward Difference
ou _u(x+Ax)—u(x)
OX AX

e Backward Difference
ou _u(x) —u(x—Ax)
OX AX

e Central Difference
U _ u(x+Ax)-u(x—Ax)
OX 2-AX

An approximation for the second order derivative is obtained by use of forward and
backward difference:

0%U _ u(x+Ax)—2-u(x)+u(x—Ax)
ox: (Ax)?

Finite Differences for Laplace’s and Poisson's equations

Let us consider Poisson’s equation for homogeneous materials in two-dimensional
Cartesian coordinates:

o’u  o‘u

where k is a material property. Using the above approximations we obtain:
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O%U  U(X+AX)—2-U(X) +U(X—AX)  Upgj—2-Uj; +Uy

ox: (AX)? - (AX)?
o°u _ u(y +Ay)-2-u(y)+u(y—-Ay) _ ui,j+1_2'ui,j +Ui
oy* (Ay)? (Ay)?

Substituting into the Poisson’s equation, we obtain:

—2-U;; +U; —-2-u;; +U;
Ay iy ax f(X’y)~Ax~Ay

iy @ Ax Ay k

Ay

Uy
Us This equation is written for each node in the problem

Ax Ug Jike
@ Q\ @ to obtain a set of simultaneous equations. These

j
4 equations are singular. Only when the potential of at
by least one of the nodes is specified, the solution of

these are possible. We see that for Poisson’s
K equation, the right-hand side is the source function
@ th multiplied by the area of the finite difference cell. That

is the total source in the cell.

Interfaces between materials

Consider the following figure, in which we have a five-point FD scheme and a boundary
between two materials. Here we solve the case of an electrostatic problem. If we assume
that the interface has no charge, then the application of Gauss’s law will give us an
equation for the potential at node 0 that includes the effect of the material interface. Using
the dotted line of the difference cell as the Gaussian surface (for simplicity, we use
AX=Ay =h), we obtain:

[[D-ds =[[£ds =0

AU h
—ds =
Ezdiu I S0 2
dn
D AU h
''An 2
: uo—ul‘h+gl'uo hs, U—u; h 2_u0—u3 D+52 Ug — U, hee, Ug ul'h_
h 2 h 2 h 2 h 2
Rearranging terms, we obtain:
2-u0-(gl+gz):glJrgz-u1+gl~u2+€1+82-u3+32-u4
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The above figure shows the special case of the corner. Using the same procedure showed
above, we obtain the following equation:

& +&;

E + &
Uy-(3-¢,+&,)= 12 2.0, 48 Uy+& Uy + u,

Neumann Boundary conditions

For Poisson’s equations to have a unique solution, either the potential or the normal
derivative of the potential must be specified at every point on the boundary (only 1 point is
necessary). If the potential is specified, this is a Dirichlet condition and the unknown nodal
potential is eliminated. If the normal derivative is specified, then we can proceed as
follows. Consider the following figure.

SOLUTION
RENAIN The potential at point (i,j) is unknown. The
Us Q@ point (i+1,)) is outside to the domain of the
solution. We express the normal derivative at
s . “ (i) as:
h ou_du _u-—u,
on ox 2-AX
() u, Solving this equation for exterior point:
u, :Z-Ax-a—u+u3
on
ou
U j = 2-Ax-%+ui4’j
Substituting this value in the general finite difference cell
Ay_ UHL]- _2uI,J +Ui711j +AX.ui’j+l_2.ui'j +ui,j*l — f(X,y) ~AX~Ay
AX Ay k

we obtain:
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ou
2-AX-——=2-U. . +2-U_, .
i i-1,] u..,—2-U . +U. .
Ay- on 4 AX i T f(x’y)~Ax-Ay

AX Ay k

A special but very common case is the homogeneous Neumann boundary condition where

au =0. In this case the equipotential lines are perpendicular to the surface. In this case:

on

Ui j = Uiy

And the equation for the cell becomes:

_Z'Ui,j +22'Ui—1,j +Ax.ui,j+l_2'ui,j +U _ f(x,y).AX.Ay
AX Ay k

Ay -

Equivalent circuit representation

We wish show that the finite difference expression has an equivalent circuit representation.
In fact, circuit simulators, such as SPICE, have been used to solve field problems by the
use of these equivalent networks. Consider the same finite difference cell showed in the
above pages:

U, —2-Uy+U, +Ax‘u2—2-u0+u4 _ f(x,y).AX_Ay

AV -
y AX® Ay k

This equation can be written as:

U —Uy Us—Uy U;—Uy U—U, ) .
O A W WA

The equation for the following circuit, can be written as:

ViVo Va-Vo VoV Vo=V _
R, R, R, R,

Iy

The two above equations have the same form.
Identifying terms:

Vo =u,; V,=u,; V,=u,; V,=u;; V, =uU,
5 1 Ax, 1 Ay
Ty K ax

I, =f(Xy) Ax-Ay

R, =R,

It is obvious that the nodal voltages have the same numeric value as the nodal potential
on the finite differences mesh.
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Exercise. Consider a square with the upper side connected to a 100 V voltage
source and the other side connected to ground (0 V). Determine the potential inside
the square.

100V In this case the governing equation is the Laplace’s equation,
i.e.. V2u=0. Also it is convenient to assign a regular mesh,

i.e. Ax=Ay. The equation for a node is reduced to:

av
ov U j—2:Up +U +U —2-U 5+, =0
U U U g U
U = A
oV

The potential in the centered point is the average of the
potential in the surrounding nodes. The solution can be
calculated by using of a spreadsheet.

B c D
100 100 100

(B1+B3+A2+C2)/4

(C1+C3+B2+D2)/4

(D1+D3+C2+E2)/4

(B2+B4+A3+C3)/4

(C2+C4+B3+D3)/4

(D2+D4+C3+E3)/4

(B3+B5+Ad+C4)/4

(C3+C5+B4+D4)/4

(D3+D5+C4+E4)/4

[L1F Y] X =N
o|lojo|lojo|e
o|lojo|lo|o|lm

0 0 0

The above figure shows the implementation of this set of equations. On the boundaries,
we assign directly the known value and at the interior point we insert the above equation.
Using the “iteration mode” in the options menu of the spreadsheet we can solve the
problem by iteration (we must select a convergence criterion, for example difference
between two consecutive iterations less than 0.01 or the number of iterations must be less
than 1000). The solution is shown in the following picture.

A B C D E
100 100 100
42857572 526700006 428573574
18.7504252 250004292 187502146
74307172 982164315 714296443
1] 1] 1]

M = | L k| =
O o oo 4o
O o oo 4o

In this case the number of iterations was 26, and the error was less than 0.02. It is obvious
that if you use a high density mesh, you can obtain more accurate results.
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Exercise to solve. Determine the potential inside this box.

10V

oV

ov 10V 10V oV
oV

10V

Finite Differences for 1-D Parabolic Equations

We consider here the 1-D diffusion equation

o’u_au

ox2 ot

which is discretized in space and time with uniform mesh intervals Ax and time-step At. A
simple approach is to discretize the time derivative with a forward difference as

The solution is known at time t, and a new solution must be found at time t , =t +At.

Starting from the initial condition at t, =0, the time evolution is constructed after each time-

step either explicitly, by direct evaluation of an expression obtained from the discretized
equation, or implicitly, when solution of a system of equations is necessary.

An explicit approach is readily implemented by substituting the space derivative with the 3-
point finite difference evaluated at the current time-step. The algorithm, written for a
generic point i of the discretization, is

At

inst = Uin "’a‘(Ax)z'(ui—l,n _2'Ui,n +ui+1,n)

u

Defining o = a~(AAt)2 , we can write the following matrix equation for the whole system with
X

N point mesh:
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1-2-« o 0o .. 0 U
b a 1-2a a . 0 e
Hana | _ 0 i, 0 Yan
N B |
0 a 1-2.a|- "

It is easy to show that this system of equations is stable if, and only if:

0<a£1
2

O<a- At2 gl
(AX) 2

In general, the time step must be very small in order to get good results from the explicit
approach. Further, if we refine the mesh we must reduce the time step, so in order to
achieve high accuracy, the computation time becomes very expensive.

Implicit schemes

A fairly general implicit scheme is obtained by approximation for the space derivative with
a weighted average of the finite difference approximation at t, and t,.; and the time
derivative is approximated by a forward difference:

.. 222I ~a. Uisn —fAul)g +Uig, .(1_/1)+a. Uit na _z(zi;;l tUigna )
X X X
aiu ~ ui,n+l _ui,n
ot At
. L At
writing the equation interms of a=a-—:
(Ax)

a-L-A) U, +1-2-a+2-a-A)u, +a-(L=2) U, +o- AUy, —
~(2-a-A+1)u ,, +a-A-u 0

i+1,n+1 =

e WhenA=1, the scheme is a forward difference equation
e The classic Crank-Nicholson scheme is obtained when A =0.5and
e when A =0the explicit scheme is recovered (backward difference equation)

To determine the stability of the method we look at the eigenvalues of the matrix. For the
Crank-Nicholson scheme, the matrix equation is:
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2+2-a 1 0o ... 0 2-2-a o 0o ... 0
ul,n+1 ul,n

1 2+2-a —a .. 0 o 2-2-a0 o ... 0
u2,n+l u2,n

0 . 0 = 0 0

.............................. ! J
0 —a 242 - "™ 0 L a 2-2.a|-""
C'Un+l:S'Un

The matrix C is non-singular and we can solve for the unknowns at the end of the time
step as:

U,,=C?'s.U =T-U,

We can find the solution at any time step from the initial conditions and a power of the
matrix T, so:

Un+k =Tkil’Un

In order to ensure stability the eigenvalues of the T matrix must all have magnitude less
than 1. These eigenvalues are given by:

2_4.q-sin? (7 _2)
2N

A= k-
2+4-q-sin’(—>-2)
2N

Where N is the order of the matrix. This expression lies between -1 and +1 for any values
of «, so the Crank-Nicholson method is stable.

Equivalent circuit representation

Consider the same finite difference cell showed in the above pages:

Uy =Uy, +2- (uo,n -2 U, +U,, )

At
(Ax)*
This equation can be written as:
uO,n _ul,n 4 u2,n _ul,n n (AX) . ul,n+l _ul,n

=0
VO Rl v ) RZ o (AX) (AX) a At
AN ———AAN
l The equation for the circuit showed, can be written
cl as:
I V, -V, +V2 -V, +C, dv, 0
= R, R, dt

And if we discretize the above equation with respect to time, we obtain:
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Vo _Vl +V2,n _V,nl+Clvl

R, R, At

n n n+l _Vl

,nzo

The two above equations have the same form. Identifying terms:

VO,n =Ug s Vl,n =U Vz,n =u,

R, =R, = AX; Cl:g
a

n

It is obvious that the nodal voltages have the same numeric value as the nodal potential
on the finite differences mesh.

Exercise. Solve the following problem:

vy —k. Y
dt

With: k =1 ang ° <= 0-1se¢
0<x<1

U (x,0) =100
And the following boundary conditions: U (0,t) =0
Uu@Et)=0

To solve this problem we can use a grid with ax=01 and the Crank-Nicholson method.

The solution can be calculated by the use of spreadsheet. See the following pictures.

dx 0 01 02 03 04 05 06 07 08 09 1 time
0 100 100 100 100 100 100 100 100 100 O 0
0O 46 86 9 99 99 99 96 86 46 O 0.01
0O 38 67 87 95 97 95 87 67 38 0 0.02
0O 31 58 77 88 91 88 77 58 31 0 0.03
0 27 51 69 80 84 80 69 51 27 O 0.04
0 24 46 63 73 77 73 63 46 24 0 0.05
0 22 41 57 67 70 67 57 41 22 0 0.06
0 20 37 51 60 64 60 51 37 20 O 0.07
0O 18 34 47 55 58 55 47 34 18 0 0.08
0 16 31 42 50 52 50 42 31 16 O 0.09
0O 15 28 38 45 47 45 38 28 15 0 0.1

The following figure shows the potential at each point (horizontal-axis=»x coordinate) and
each curve represents an interval of time.

© R. Bargall6. ELECTRICAL ENGINEERING DEPARTAMENT. EUETIB-UPC 12 of 22




EINITE ELEMENTS FOR ELECTRICAL ENGINEERING

NUMERICAL SOLUTION

120

100

80

60

40

20

0 01 02 03 04 05 06

0.7

0.8

0.9

The following figure shows the evolution of the potential at each node of the mesh as a

function of time (horizontal axis =»time)

120

100

80

60

40

20
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Monte Carlo methods

The Monte Carlo methods are probabilistic numerical methods employed in solving
mathematical and physical problems. They are a method of approximately solving
problems using sequences of random numbers. Monte Carlo methods are applied in two
ways:

e Simulation, for example to simulate a neutron’s motion into a reactor wall: its zigzag
path being imitated by a random walk.

e Sampling, refers to methods of deducing properties of a large set of elements by
studying only a small, random subset. For example, the average value of f(x) over
a<x<b can be estimated from its average over a finite number of points selected
randomly in the interval. This amounts to a Monte Carlo method of numerical
integration.

Here, won't detail the generation of random numbers and variables. You can find this
information in any book on statistics.

Numerical Integration
Suppose we wish to evaluate the integral
1=t
R
gnif_orml;k/)distributed in R. Then f(X) is a random variable whose mean value and variance
is given by

_1
R

Var(f(X))=;jf2—[;ij

(0=t

where
R =[dX
R
If we take N independent samples of X, i.e., X1, Xo,......... , Xy, all having the same
distribution as X and form the average
FOX)+ (X)) + i +f(XN)=iif(X.)
N N&

we might expect this average to be close to the mean of f(X). Thus we can write:

RS
|:Niz:l:f(xi)
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For one-dimensional and two-dimensional integrals by application of the above equation,
we obtain:

f(x)dx~—2f(X)

D — T QD C— T

Tf(x)dxdy~w_if(xli,x2i)

Fixed Random Walk method to solve potential problems

Suppose that the Monte Carlo method is applied to solve
/"L—L_L—L—'Lx.\ Laplace’s equation in a region R, subject to Dirichlet
i boundary conditions:
Vifrn=0 Vif =0
V = f,(r,t)

\ i
\, We begin by dividing R into mesh and replacing V? by its
\W' h finite difference equivalent equation. The final equation is

£ written as:

f(x,y)=p,, - f(x+hy)+p,-f(x=hy)+p, -f(x,y+h)+p, -f(xy-h)
where;:
px+ = px— = py+ = pyf :1/4

A square grid of mesh size A is assumed. The equation may be given a probabilistic
interpretation. If a random walking particle is instantaneously at the point (X, y), it has
probabilities p,,,p,_,P,,, P, of moving from (X, y) to (X+A,y);(X=A,y);(X,y +A);(X,y—A),
respectively. A means of determining which way the particle should move is to generate a
random number A, 0< A <1 and instruct the particle to walk as follows:

0<A<1/d4= (X, y) > (X+h,y)
1/4<A1<1/2=(X,¥) > (X=h,y)
1/2<A<3/4= (X, y) > (X,y+h)
3Md<A<1l=(XYy)—>(X,y—h)

To calculate the potential at (x, y), a random walking
particle is instructed to start at that point. The particle
proceeds to wander from node to node in the grid until it
reaches the boundary. When it does, the walk is
terminated and the prescribed potential V,, at this boundary
point is recorded. This value is denoted by f;. Then a second patrticle is released from (x,
y) and allowed to wander until it reaches a boundary point, where the walk is terminated

H\fll--'r"]/F
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and the corresponding value of the potential is recorded as f,. This procedure is repeated
for N times. The expected value of this set of potentials is the solution to the problem, i.e.:

F0y) = 3 f

where N, the total number of walks, is large. We can repeat this process for the whole set
of grid points to obtain the solution at each point. If you need to solve the Poisson’s
equation
VA =-g(x,y)
V=V,
Then the FD representation is:
2

A
FOGY) =P - fx+hy)+p, - f(x=hy)+p,, - F(xy+h)+p, - F(x,y-h)+ 4g

and the final term must be recorded at each step of the random walk. If m; steps are
required for the i random walk originating at (x, y) to reach the boundary, then one

records
2 j=m;-1

A
fit Ty >9(x,.y))
j=1

Thus the solution can be expressed as

fmw:;iﬁ+fNif2mmmﬂ

il =L\ j=1

The following figure shows an Excel implementation of this methodology (montec.xIs). You
must draw the whole system. The boundary values are indicated by colours:

e Dirichlet boundaries: paint the cells and insert the known value.
e Neumann boundaries: paint the cell grey.

Afterwards, select the cell where you wish to calculate the potential and press the start
button (not shown in this picture); after the prescribed number of tests (50 in this case) the
calculated value is shown.

1=
20 No. of tests = 50
21 Counter = 50
22
23
24
25
2B
27
28
28
30

Note that the area must be closed. If this is open, the solution can’t be reached.
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Approximation techniques

Consider the following problem: The resolution of a system of differential (or integral)
equations established in the general form:

L(®)-f =0
C{oh=0

where L is a linear operator (for example V?), fis a known function, and @ is the unknown
function to be determined. The operator L is specified in region Q surrounded by the
boundary I'. Proper boundary conditions (C) are specified on I'. The function @, where the
subscript represents the exact solution of the problem can be approximated by assuming
that it varies according to a set of known functions, each of them multiplied by an unknown
coefficient. These approximate function coefficients, whose number can be increased to
increase the precision of the results, can then be determined by solving a system of
equations. Depending to the approximation method we obtain different equations and
methods such as: finite elements, boundary elements, moment’s method and others
(including finite differences method!) A common feature of all the methods applied is that
the approximate solution is assumed to be the finite sum

j=n
D, =9, +zaj "9
=

where o; are the known trial (or basis) functions and g; are the coefficients to be calculated.
Differences between the methods appear in the process of determination of coefficients a;.
The trial functions should be linearly independent and form a complete set in region Q.
Function oo is usually specified in order to satisfy Dirichlet boundary conditions on I".

We introduce here the so-called residual Ry:

L(ch)_ f = Rn
The residual function R varies in the domain. Consider now how to distribute the R
function. The concept common to all of the methods is that the coefficients a are

evaluated by orthogonalization of residual R, to a certain set of n weighting functions w;,
i.e., by zeroing the inner product:

(Ryw,)=[R,-w-dQ=0, i=12.....,n
Q

Substituting, a set of n simultaneous linear algebraic equations is obtained. The general
form is:

j=n
(f—Lppw)=>a, -<Wi, L(/)J->
j=1
If the inner product of two functions defined above

<u,v>:£u'v*~dQ

Has the following properties:
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uv)=(uv)*

<

(au, +a,u,,v) =2a,(u;,V)+a,(U,,V)
(uv)>0ifu=0
<

u,v)=0if u=0

We can see that this is symmetric and positively defined. In this case the Variational
method (Rayleigh-Ritz method) may be applied. The approximate solution of Ld =g is

determined as the minimum of the energy functional I:
1(®)=(LD,®)-2(d,g)

Substituting the trial functions and minimizing this by partial derivation with respect to each
coefficient,
o _a _a
O0a, 0Oa, o0a,

we obtain the following set of simultaneous equations:

(Lono) (Lono,) Lovoy) [T ] |(9.2)

<L¢N.,(ﬂl> <L¢N.,<oz> | <L¢N.,¢N> a.N (9.04)

For Laplace’'s and Poisson’s equations and their variations the following table of
functionals are applicable.

PDE FUNCTIONAL
VO +k’D = 1
+ 9 Zﬂvcpz—kchMZgCD]dv
V2D + k2D =0 ;HV@z—kzcbz]dv
1 d*® 1 do
VD — W od ——=0 EJ't U{Vc}) ( it j }dvjdt
dd
Ve -k =0 ;jt°(j[vq> —kqb}dv]d
\%
20 —
Vi =g Zvjﬁvqf +2g0 v
Vi =0 ;Vjﬁvqf]dv
2]
dx dy dz
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Depending on the weighting function we can obtain different equations to solve.

(Ryw,)=[R,-w-dQ=0, i=12,......,n
Q

The following table shows the weighting functions and the equations to be solved for each
approximation method (for the one-dimensional problem).

Moment method. The weighting functions is the simplest: 1, x, x%,.....,x" (for a one
dimensional problem). In this way some high order moments of the residual can be
set to zero.

Point collocation. In this case N points are chosen in the domain and the residual
is set to zero on these points. This operation can be interpreted as defining the
weighting functions in terms of Dirac impulse.

Sub-domain collocation. The method is similar to the collocation method
described above but now the residual is required to be zero over a certain region,
rather than a series of points.

Least squares. In this case we minimize the square of the residual.

Galerkin. In this case the weighting function is the same as the approximating
functions.

Raleygh- Ritz method (functional minimization).

Method Weighting functions Determination  procedure of
linear algebraic equations
1. Moments i :
Wi=X0 1=0L20 [R,x'dQ=0, i=12....,n
Q
2. Point collocation W, =J5(X—X,) R,=0
3. Sub-domain 5 1 a <x<b b.R 00
collocation "0 otherwise ! n’
4. Least squares oR, b OR
W, = 40 =
= j R, % dQ =0
5. Galerkin W, = o, b
[R,-¢-d2=0
6. Rayleigh-Ritz | - o _a _a _
da, 0a, o0a,
(usually the resultant equations are
the same as obtained on the
Galerkin method)
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Example. Solve the following equation by application of each approximation
method.

2
O _ . D(0)=0 ®(1)=0
OX

This equation has the exact solution: ®(x) = 1)(2(1— x3)

We select the following trial functions: ®(x) = a, -sin(zx) + a, -sin(2zx) for methods from 2 to
6.

i=n @, =0
(Dn:¢o+zaj'(/’j @ =sin(zx)
i1 :
@, =Sin(272x)

1. Moment method. We select the following trial function, a simple polynomial in X, which
after satisfaction of the boundary conditions results in (for the sake of simplicity only two
terms will be considered=>» only the first two moments are equal to zero):

® =x(1-x*)-(a, +a,-X)
The residual is:
R, =—6-:;11-x+a2-(2—12-x2)+x2

and the system of equations to solve is:
1

I(—G-ai-xjtaz-(2—12-x2)+x2)-dx:0
0
1

'[(—G-al-x+a2 -(2—12-x2)+ xz)-x-dx:o
0
The values of the unknown coefficients are:

B 1
%71
a, =+

24

2. Point collocation. We select the following matching points:

w, =0(x-1/3) w,=5(x-2/3)

The residual is
2x 2 ; .
R (X) = d E) iy 0 (a, -sin(zx) +2a2 -sm(27zx))+ 2o
OX OX

=-a,-7°-sin(zx) —a, - 7° - 4-sin(27x) + x>

and the system of equations to solve is:

R,(1/3)=0=-a,-7*-sin(z/3)—a, -z -4-sin(2z/3) + (1/3)°
R,(2/3)=0=-a,-z*-sin(2z/3)—a,-x*-4-sin(4x 13) +(2/3)?

The values of the unknown coefficients are:
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a, =0.0324987
a, =—0.004847

3.Sub-domain collocation. We select the following domains:
o=1 0<x<1/2 ¢,=1 1/2<x<1

The residual is determined as
1/2

_[(—al -z?-sin(ax) —a, - % - 4-sin(27x) + xz)-dx =0
0
1
_[(—a1 -x?-sin(ax) —a, - % - 4-sin(27x) + xz)-dx =0
1/2
The values of the unknown coefficients are:
a, = 0.053052

a, =—0.01989
4. Least squares. The residual and the equations to solve are:

R,(X)=-a,-z*-sin(zx)—a, - 7* - 4-sin(27x) + x*
Ry __p2 -sin(zx); Ro __z? -4-sin(27x)
o, oa,

j(—a1 -z?-sin(ax) —a, - % - 4-sin(27x) + xz)-(—ﬁ2 -sin(;zx))~dx =0

1
I(— a, - 7% -sin(zx) —a, - £ - 4-sin(27x) + xz)- (— 7’ -4-sin(27zx))~ dx=0
0
The values of the unknown coefficients are:
a, =0.03836

a, =—0.03225

5 and 6. Galerkin and Rayleigh-Ritz methods. These two methods have the same
equations to solve.
W, = ¢,

b
[R,-¢-d2=0
(— a, -7 -sin(zx) —a, - 72 - 4-sin(27x) + XZ)-(Sin(ﬂX))- dx=0

(— a, 7% -sin(zx)—a, - 7° - 4-sin(272x) + xz).(sin(an))~dx =0

Ot 2 O e

The values of the unknown coefficients are:
a, =0.03861

a, =—0.00806
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The following figure shows the exact and approximate solutions. The Galerkin and the
moment’s method have the best accuracy. Note that the moment’'s method approximation
function includes the exact solution in its formulation.

0.07
0.06 -
0.05 -
0.04 -
0.03
0.02
0.01

0
-0.01
-0.02

e cXact == point ===subdomain === least squares === Galerkin ====moments

least

X exact moments point subdomain squares Galerkin

0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.100 0.008 0.009 0.007 0.005 -0.007 0.007
0.200 0.017 0.018 0.014 0.012 -0.008 0.015
0.300 0.024 0.026 0.022 0.024 0.000 0.024
0.400 0.031 0.034 0.028 0.039 0.018 0.032
0.500 0.036 0.039 0.032 0.053 0.038 0.039
0.600 0.039 0.042 0.034 0.062 0.055 0.041
0.700 0.038 0.040 0.031 0.062 0.062 0.039
0.800 0.033 0.034 0.024 0.050 0.053 0.030
0.900 0.020 0.021 0.013 0.028 0.031 0.017
1.000 0.000 0.000 0.000 0.000 0.000 0.000

The Galerkin and the moment method are the most accurate. Note that the moment
method approximation function includes the exact solution in its formulation.
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EINITE ELEMENTS FOR ELECTRICAL ENGINEERING NUMERICAL RESOLUTION: FE METHOD

FINITE ELEMENT METHOD

ONE DIMENSIONAL FINITE ELEMENT ANALYSIS

The boundary value problem to be considered is defined by the ODE:
—d(adq)j+,8® =f xe(0,L)
dx\  dx

where @ is the unknown function, o and B are known parameters and f is a
known source. The boundary conditions for ®@ are given by:

q)‘x:o = p
"0 =g
dX x=L

Discretization and interpolation

The first step is to divide the solution domain (0,L) into small subdomains, which
in this case will be short line segments. Let I° (e = 1,2,3,....M) denote the length
of the eth segment, with M being the total number of segments. Further, let x; (i
= 1,2,3,....N) denote the position of the ith node with x; = 0 and xy = L. Both
elements and nodes are numbered in order from left to right as shown in the
next figure.

Element: 1 2 3 M-1 M
O P P I P ') O
hy hy vy vy py
Node: 1 2 3 N-2 N-1 N
x=0 x=L

O O
i j

To keep the formulation consistent with two and three dimensional cases, we
adopt a local numbering system in the formulation. In the following, the
superscript e is used to denote the quantity with a local number as a subscript,
while for all other quantities the subscript is a global number.
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1

The local and global systems are related by:

N

e+l

for e=12,........ M

The second step is to select the interpolation functions. We use linear functions.
Within the eth element ®(x) may be approximated by:

®°(x)=a° +b’x (2)

where a°® and b® are the constant to be determined. For linear elements, there
are two nodes associated with each element: one located at x; and the other at

X, . Specifying (1) at these two nodes yields:

e e eye
®; =a"+b°x
e e eye
d; =a’ +b°x,

e e

X .
where  denotes the value of d(x) at . Then solving for a° and b°® we
D, 2
obtain:
he = (I)‘; —(I);
==t
OMEN ()
ae — q): _ 2|e 1, Xf
I°=x; — X/

Substituting in (1) we obtain:

cbe(x){ Xz }cbe {XI }CD‘* ZN () D
N ="
Nz =X

Ie
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N functions are called the interpolation or basis functions.

1
Ne, Ne

X%y XE,

Formulation

The third step is the formulation of the system of equations. We can use the
Variational approach or the residual weighting formulation (Galerkin method).
The residual for the Galerkin method is:

d( do
=— D — f
' dx( dxj+ﬂ

and for each element the residual can be written as:
X
RS =[Nfrdx i=12

We use N° as weighting functions. Substituting we obtain:

Rie:]gNie(—d( C;CD]+ﬁCI)jdX JN fdx

X

integrating by parts for the first term on the right hand side, we obtain:

u=N;

dv=—( dCDJ :>judv uv — jvdu
dx

X8
X2

2 dNE do dd
R® = ® |dx— | N/ fdx—aN; ——
! I [( dx de al J I e dx

X

X

2
The substitution of ®°(x) = z N (x)@; leads to the equation:

=
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dop|*

e_2 eXg dN d e
R._Zcp.j + ANENE [dx — jN fox—aNj -~

. dx dx

X

and in matrix form it becomes:

R°)=(k*Jor)-(bo°)-(g") ®

. f[( dNgdN
w& o

1

where:

jN fox

1

do[*
N e
9 dx

)

We note that (K°) is symmetric and, if o and B are constants or can be
approximated by constants within each element, matrix elements can be
evaluated analytically; the result is:

e e
(04
Ki =K =T+ﬂ7e
I 3l
e e
o
Klez = K;l =-— T ﬂe
I 6l

by b‘*_feI
2

With the elemental equation given in (3), we can proceed to form the system of
equations by summing it over all elements:
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Assembly of the equations

To illustrate the assembly of equations, we consider a case within three
elements and four nodes.

O O O O
1 2 3 4

Using the relationship between the global and local nhode numbers, we can
expand (K°®) into a 4x4 matrix and (®°) into a 4x1 column. These, for the first
element can be expanded as:

Ky K, 00 O}

(Kl): K:le K%z 0 0 (q)l)z q)lz

0 0 0 0f 0

0 0 00O 0

and their product becomes:

Ki Kp 0 0)@r| (Ku®;+K,d,
(leq)l): K%l ng 00 (Dlz _ K;1®1+K;2q)12

0 0O 0 0| O 0

0 0O 0 OLO 0

For the second and third element we can write in a similar way:

0 O 0 O 0 0

0 K2 K2 0 D2 K2ZD? + K2D?2
K-y oo ok of @) (ko2 )=| o

0 KZl K22 O (DZ KZlCDI + KZZCDZ

0 O 0 O 0 0

0O 0 O 0 0 0

0 0 0 0
(K3): 3 3 | (CDS): 3 (K3XCD3): 3 13 3 .3

0 Kll KlZ (I)l Kllq)l + Kqu)Z

0 0 Kj K3 D3 Ku®@; + K3,d3

When these products are added:
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K @: +K;,d3 0 0
3 K:dr+ KLl K2D? + K2D2 0
Z(Ke)(q)e)= 2 270+ 121 12 l22 22 + 3 1.3 343 |7
e=1 0 K21CD1 + K22(1)2 Kllq)l + Kqu)Z
0 0 K3 @2+ Ko D3
K @1 + K3,

Kélq)i + K;Zq)lZ + K121CDf + K122q)§
K@ + K@ + K0T + K@
K@ + K@

According to the relation between the global and local node numbers:

@] 1000
O =D, ®,| [0 1 0 0f(d,
D) =D’ =0, - O’ _|01 00|,
D=0 =D, ®2| (0 01 0],
=0, ON 0 01 0|\,
o3 0 001
By making these changes, we can write:
K, K., 0 0 | o,
Zsl(Kqu)e): K;l K;2+2K121 2K122 . 03 o,
e=1 O K21 K22 + Kll K12 q)3
0 0 K231 K232 @,
Similarly we can expand (b°) to find that:
b; 9
3.0\ | by +bf S0y |oi+gl
Z(b ): 22 l3 , Z(g ): 22 l3
o1 b2 + bl e=1 g, +0,
b; 9

Except for g1 and g4, the other elements of (g) can be written as:

9, =0;' -0,
After substitution of
X5
gfzaNde =05Nied£ —aNde
dX |, dX [,y dX |y

this becomes:
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do
a -
dx

dod
ai
dx

g =

x=x5t X=x{

from x®%; = Xe and X% = Xe+1 We can write:

i-1 i
X, =X =X

and since aC; is continuous at x;, it is obvious that g; = 0 for i = 2, 3. Therefore
X

(g) has two only nonzero elements:

do

T dx
0

0

do

a =
dx

X=X

(9)=

X=X,

For a general problem with N nodes we then have:

do

dd
o — =
dx

On aa

1
X=X,

g,=0 for i=LN

X=Xy

Boundary conditions

First we consider the Dirichlet condition, that is: @ =p. To enforce this

condition we need to modify the system of equations: we impose ®, =p for
example by setting:

Kiu=1,b1=p
And K;=0forj=2,34,....N

The resultant system becomes:

1 0 0 0\, p
Ku Kp Ky Kyl o, _ b,
Ky Ko Ky Ky | @ b,
Ka Kg Kg Ky @, b,
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This system is not symmetric. This is not desirable, since symmetry is a very
important property which can be exploited to reduce computer memory
demanded as well as processing time. To restore the symmetry we may modify
the above equation as:

1 0 0 0)Yo, p X
b Kzz K23 K24 (1)2 2 —K21p
0 Kzz K23 K24 o, _| ™2 _K21p K K K ®. |=|b K
- b = 32 33 34 3 |=| B3 =Ky P
0 Ksz K33 K34 CD3 3 K31p K K K d b K
b 42 43 44 4 s — Ky P
0 K42 K43 K44 (1)4 4 K41 p

As a result g; should be discarded. Next we consider the boundary condition

0((3;)1()-%-7(1) =(q to be applied at x = L. If the boundary condition is the

x=L
homogeneous Neumann condition (y =q=0), then gy vanishes. Otherwise, we
have:

do
gy=a—_— =0-yDy

ax|,_,

Therefore gy can be absorbed into (K) and (b):

K22 Kzs K24 ch bz - Kle 0
K K Kgy | @5 (=] b —Kyp [+ 0
Kp Ki Ky |\ @, b, —K,p q-yo,

Example. Determine the potential distribution into the wire which is
connected to a constant voltage Vo. Also determine the current that flows
for it. The wire has constant section and conductivity. Divide the entire
domain in 3 elements.

Solution. The applicable equation is: V-J=V-o(-VV)=0

V& =0 o=V
= =1
J =0k —d(adq)j+ﬂ®=f ¢
x=0-V =V, dx\ dx £=0
x=L->V=0 f=0

We divide the wire into three elements with equal length: I° = L/3.
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V, vV, Vs vV,
O O O @,
N NS
E'l E2 E3
L/3 L/3 L3
(e} T g

By direct application of the expressions for Kjand b;, we can write:

. . ae e 3
K11:K22:|e+§|e:|_
. . ae e 3
K12:K21:_|e+ge:_|_
e e ele
b =b = 14 =0
Kb=b+g
3 -3 0 0 D, 0 0
11-3 6 -3 0 D, 3 0 N 0
L|0 -3 6 -3|a®,| (0] |0
0 0 -3 3 )ld 0 0

4

This is a singular system. By application of BC: @, =V,; &, =0 we can write:

O, =p=V,
1 0 0 0 Vv
0 6 -3 0 il O(EW 0 =3 0y, (3
03 6 -3lo |0 @f NN B R
3 ° 0 -3 3)®,] (0
0 0 -3 3Jo,) (0-(0)V,
®,=p=0
6 -3 0)®,) (3 (-3)0
6 -3]o,] [3
3 6 0f®,|=|0N—|(-3)0|= =%\,
3 6 |o,| [0
0 0 o,/ (0 (0)0

1
SIS
w N
| I |
|
|
w @
o |
w
1
N
1
o w
o
Il
WiIFRPW|N
o

© R. Bargall6. ELECTRICAL ENGINEERING DEPARTAMENT. EUETIB-UPC 9 of 47
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JzaE:Ud—Vzaﬂ
dx AX
lzJLZ_CDl:aV—O
L/3 L
PP Vo _ (foYogscgYog_ Vo _ Vo Vo
=0 t=o :>I—”JdS—HGLdS—O'LS—1L— "R
_o 0= Vo s s
’ L/3 L

We obtain an analytic solution to compare with numerical results:

dav x=0 V=V,=b
Ik e P v=o=aL+V(ﬁ‘5‘:_vL0
V=Vo(1_xj:>E=—dV=V°:>~]=O'E=GVO

L dx L L

Exercise 2. Solve again if the wire is made of two materials: one from x =
0to x = 2L/3 and the other from x =2L/3to x = L.

V, Vs V, V,
O O O @
N R
E, E; E,

L/3 L/3 L/3
O O 07

In this case the relevant equationis:  V-J=V-o(-VV)=0

o=V
dx 7 dx =0
f=0

By direct application of the expressions for Kjand b;, we can write:
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a’ * 3o
K111:K;2:K121:K222:|e+§e:|_1
e e 30_
Kl Kl KZ KZ a +ﬂ —__""1
12 7 "h21 T M2 T a1 T Ie 6|e L
af * 3o
KG=Ke =g L
e e 30_
K:—k?o-% B _ 30
S LT L
b} be—feI =0
2
Kb=b+g
30, -30 0 0 Yo, 0) (0
1|-30, 60, —-30, 0 @, (O N 0
Ll 0 =30, 3(o,+0,) -30,| D, 10| |o
0 0 -30, 30, \0, 0) \0
This is a singular system. By application of BC: ®, =V,; @&, =0 we can write:
0 0 V
®, ’ 60, ~30, 0 \®,) (30
0 60'1 -30, 0 | o, 0—-(-30,)V,
=|-30, 3(o,+0,) —30,| o,
0 —301 3(c,+0,) -30, | O, 0-(0)v,
0 -30, 3o, |\,
0 - 30, 3o, \O, 0-(0)V
4
6 -3 0y @ 3 -3)0
1 71 2 1 3 60, - 30, D, 30,
-30, 3(o,+0,) 0| D, |=| O V,—-|(-30,)0 = = o
-30, 3(o,+0,) 0
0 0 1\D, 0 (0)o
o, +0,
CDZ O'1+20'2
D, 01 °
o, +20,

If, for example o, =20,, we can obtain:

o)
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JeoE ooV _ AV
dx AX
1:O'1CD2_CD1251§\L0
L/3 4 L
O, -D, 3V,
2 =0y =0, =
L/3 4 L
5. 0= 3V _0y 3V, _ 3V,
3=0, =0, = =0,
L/3 2L 22L 4L
3 1 1
Sv, SV, v,
_ s 3Vogqe_ 3Voe_4°_ 4% _4°
I, =[[3,08 = [[o, P dS =0y 20 1L BT R
s s
3 1 1
1, = [[ads = [[o, Lo ds 3VUS—4VO— PG R =R,=R,/2
Z_J._[ _J._[Ul - lZT ik_ L/3_ R2 >R =R, =R
s s
3 1 1
1, =[[ads = [[o Vogs—o,3Vos - 2% _ 2" _p"
i AT LT TR T 1L L3 R,
0,8 %S
Exercise to solve
Solve the following 1D problem:
du
——=f 1<x<2
X

Calculate the solution with the use of linear interpolation elements and
discretization points: X; = 1, X, = 1.5, x3 = 1.7 and x4 = 2.

Solve assuming:

) f=1; u(l) =5; u2) =7.
) f=x; u(l) =5; ui2) =7.

Solution:
a)u=[5 6.125 6.505 7]
b) u=[8755 6.125 6.5645 7]
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TWO DIMENSIONAL FINITE ELEMENT ANALYSIS

The boundary value problem under consideration is defined by the second

order PDE:
S P B P I
OX ox ) oy oy

The boundary conditions to be considered are given by:

O =p on I,
do do
—X+a,—yn+yP=q on T
(ax dX ay dy yj q 2

If the properties of the domain characterized by ax and ay have discontinuities or
abrupt change, and furthermore, if there is no surface source of any kind at the
discontinuity interface, ® then satisfies the continuity conditions:

®"'=d" on T,

. do” . do” _ do~ _ do-
a’x X+a'y yIn=la« X+ay yin on T,
dx dy y

Domain discretization

The first step is to divide the domain area into a number of two dimensional
elements. We use triangular elements here. To identify each element we can
label the elements with a set of integers, and to identify the nodes that are the
vertices of the elements, we can label them with another set of integers.

Since each element is related to several nodes (3 for a triangle) a node has its
own position in the associated element in addition to its position in the entire
system. This position can also be labelled with an integer number referred to as
the local number, in contrast to the global number, which indicates its position in
the entire system.
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To relate these three numbers- the global node number, the local node number,
and the element number — we introduce a 3xM array, denoted by n(i,e), where i
=1,2,3and e =1,2,3,...., M where M denotes the total number of elements.

n(i,e) is called the connectivity array; i is the local number of a node, e is the
element number, and the value of n(i,e) is the global number of the node.

To illustrate this we consider the example shown in the following figure. We
have 4 elements and 6 nodes. The array n(i,e) can be numbered as:

e n(l.e) | n(2,e)|n(3,e)
1 2 4 1
2 5 4 2
3 3 5 2
4 5 6 4

The numeration is assigned in counter clockwise direction (left =» right; down =
up). In addition to the data described above, some other data are also
necessary in the FE formulation:

- X, Vi, which provide the coordinates of the nodes i = 1,.... N, where N
denotes the total number of nodes.

- The values for ax, ay, B and f for each element.

- The values of p for the nodes residing in I';.

- The values of y and q for each segment coincident with I',.

Interpolation

If linear triangular elements are used, the unknown function within each element
IS approximated as:

d°(x,y)=a®+b°x+c°y (1)

where a°, b® and c® are constant coefficients to be
determined and e is the element number. For linear
triangular elements, there are three nodes located at
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the vertices of the triangle. The values of ® at each node are ®°, ©°%, ®°;
respectively. Enforcing (1) at the three nodes, we obtain:

O =a’+b°x; +c'y;

@ =a’+b°x; +c°y;
®°% =a‘+b°x; +Cy;

Solving and rearranging terms, we obtain:
3
D (x,y) = Y Nj(x )P (2)
j=1

Where N} (x,y) are the interpolation or expansion functions given by:

e 1 e e e H
Nj(x,y):ZAe(aj+bjx+cjy) j=123
in which:

a; =X;¥; — Y3 X bl =y;-V; Cf = X5 =X

3 =X Y1 — Y5 by =ys-¥1 C; =X — X%

a5 =X Y; ~ Y% bs =y -y; C; =X, =X

11ﬁ yr .
A‘*:El X; Y, =§(bfc§—b§cf):AREA of the eth element
L X5 Y;

In the above equations, x% , y° denote the coordinate values of the jth node in
the eth element. It can be easily shown that the interpolation functions have the

property:

1 i=]
Ne(xE,y¢) =
J,L){Oiij
and, as a result, at node i, ®° in (2) reduces to its nodal value ®7. N(x,y)
vanishes when the observation point (x,y) is on the element side opposite to the
jth node. Therefore, the value of ®° at the element side is not related to the
value of ® at the opposite node, but rather it is determined by the values at the
two endpoints of its associated side. This features guarantees the continuity of

the solution across the element sides. The following figure shows the
interpolation function N® for a triangular element.
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Ne1 Ne2
Variational formulation

The Variational problem equivalent to boundary value problem is given by:

SF (@) =0
®=p on T,

Where:

F (D)= ;g[ax(a@ff +ay(8§j +ﬁ(®)2JdQ+rj[gq>2 +qq>jdr—jgj e

is the functional equation which must be minimized. For simplicity first consider
the Homogeneous Neumann Boundary condition with y=q=0 for which the

line integral in the functional vanishes. Thus the functional can be written as:

F(®) =) F*(®°)

Where M denotes the total number of elements and F¢ is the sub-functional
given by:

Fe(qa)-gg[ax(@(;_‘fj +ay(a§—‘;ej +ﬂ(®e)2}dﬂ—gf®ed9

with Q° denoting the domain of the eth element. Introducing the expression

3
D°(x,y) =D N°(x,y)®$ and differentiating F° with respect to ®{ yields:

j=1

oF® & ON? | ON; ONF | ONS - . .
o =;®jjj[ax(gj[ - me(ﬁj(ﬁ}rmi NdeQ—Lj NFdQ =123
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EANSOEY

Where:
oF*¢

a(I)le @ €
1
OoF*¢ oF°® | . e
{aq)e}: oD ¢ | o] 2.
ane @,

_aq)ae_

The elements of the matrix [K®] are given by:

] ON? ) ONJ ON?F Y ONJ enre :
K :y{a( > }[ aX'me[ ay I ay‘)+/)’Ni NdeQ =123

and those the vector [t°] by:

tf=[[NsdQ =123
Q

[K®] is a symmetric matrix. Assuming now that the coefficients a,a,, B, f are

constant within each element and equal to a‘x,a®y,3°, f° respectively, the
above integrals can be evaluated analytically:

e l [T [CPN-PN Ae €
Kij=4_Ae(axbibj+ayciCi)+Eﬁ (1+5'J) _ 1 IZJ
tsz_efe i
3

Assembly to form the system of equations

With the elemental equation, we can assemble all M elements, then impose the
stationary requirement on F to find the system of equations:

EEAR S S R

The system of equations can be written compactly as:

[K]o]=[t]
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Where [K] is assembled from [K®] and [t] is assembled from [t°]. In a similar way
on the 1D example, we can show that the [K] and [t] matrix for the four element,
6 node example system is equal to:

1
2
O
(2)
04
)
K K 0
KjS Kjl + K3'23 + K??3 K'a:‘al
0 K Ky}
Ks  Ku+Ky 0
0 Kp+Ky o Kj
0 0 0
ts

e | n(1,e) | n2,e)|n(3e)
1|2 4 1
215 4 2
313 5 2
415 6 4
4
4 2
(3) (4)
3 5 5 6
KL, 0 0 |
Ki + Kz Ki+Kz 0
0 K 0
Kp+Kyu+Ks  Ku+Ky o Ky
K122 + KfS K121 + KSZ + K141 KfZ
Kz Ka Kz

Incorporation of the boundary conditions of the third kind

The system above is derived by the assumption that @ satisfies the
homogeneous Neumann boundary condition on I,. Now let us consider the
general case with no vanishing y and q. We add to the functional an extra term:
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F, (D)= j[gqﬂ +q<DJdF

Assuming that I', is comprised by Ms sides or segments elements, the above
equation can then be written as:

M, S
F, (D) = zm@sz +ch1>de$

s=1g

The unknown function ® within each segment can be approximated as:
2
D°(X,y) =D NS (X, y) D}
j=L

N =1-¢

where: in which ¢ is the normalized distance measured from node 1

2
to node 2 in the segment: £ =0 at node 1, and ¢ =1 at node 2, and between

the two nodes it varies linearly. Substituting and differentiating it with respect to
®; yields:

aF (®) 2 Sl S S S]S I SIS
ab@_s :Zcbjjy NPNSIdS - [aNsIsdg
i =1 0 0

where I° denotes the length of the segment. In matrix form we can write this as:

o el b

op*

with the elements in [K®] and [t°] given by:

1
Ks=[7"NeNSIdg i j=1,2

0

1
tf = [aNsIPdg i=12
0

if yand g are constant within each segment and denoted by »°* and g° the
above integrals can be evaluated analytically and the result is:

S SIS
Ki=7 E(l—i_é‘ij) _{1 i=j

N P00 iz
="
IS

To include Fy, into the system (4) it should be modified:
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66 e=1 6q)e s=1 aq)s e=1 §=

m:i[ape}ﬁ{aaﬁ}:i[[Kqu)e]_[te]]&l;[wl@s]_[ts]z0

Where [an
0

S

] [K®], [®°] and [t°] have also been augmented. To do this, we

need an array that relates the segments and the global number of the
associated nodes. This array, ng(i,s) (i =1,2; s = 1,....., Ms) plays a similar role
as the connectivity array n(i,e). In ng(i,s) we store the global number of the ith
node of the sth segment.

Consider the above example, if I, comprises the segments in the sides defined
by the nodes 6,4,1,2 and 3, the array ns(i,s) can be numbered as:

s | ns(1,8) | ns(2,8)
1|6 4
2 14 1
3|1 2
412 3

[K®] can be assembled to [K] by adding each Ki 10 K, isn (s and similarly [t°]
can be assembled to [t] by adding t’ to t

ng (i.s) *

Imposition of the Dirichlet boundary condition

We need to impose on the system the Dirichlet boundary condition which
applies to the nodes on TI;. To illustrate how that is done, we consider again the

example. Assume that the nodes 3, 5 and 6 are on I, and they have the
prescribed values ps, ps and pe respectively. To impose the condition @, = p,
we can simply set:

=0 for i=1245,6
t; =P

This destroys the symmetry of the matrix K, and to restore this property we can
make the following modifications:

ti <_ti - Ki3 Ps

for 1=12,45,6
Ki;=0
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O, =p

In a similar way, we can impose the other conditions: ®, and finally, the

6 = Ps
matrices K and t become:

[ K11 K12 0 K14 00 1:1 - K13 P; — K15 Ps — KlG Ps |
K21 Kzz 0 K24 00 tz - K23 Ps; — Kzs Ps — Kzs Ps
K]=| © 1 0 00 gy Ps
Ky Kp 0 Ky 00 ty —KygPs = Kis Ps — Ky P
0 0 0 10 P
0 0 0 0 0 1] I Pe |

With the deletion of third, fifth and sixth equations, the system becomes:
(D1 t1 - K13 Ps— K15 Ps — K16 Ps
Kau Ky Ky | @, =]t =Ky Py =Ky Ps = Kyg P
q)4 t4 _K43 Ps _K45 Ps _K45 Ps
Another approach commonly used to impose Dirichlet boundary conditions

without the modification of the system of equations is to choose a huge number
(10°) and set:

K, =107
t=p10"

For example to impose @, = p, the equation associated to ®, becomes:
K @, + K,®, +10°®, + K, @, + K D, + K, D, = p,10™
Provided that all matrix elements and unknowns are smaller than 107°, the

above equation is effectively equivalent to ®,=p,. The new system of
equations then becomes:

Ki Kp Ki Ky K K | @ L

Ka Kp Ky Ky Ky Ky | @ L

Ka Ky 10 Ky Ky Ky | @ | Ps 107

Ki Kp Ki Ky Kig o Kg | @, t,

Ko Ksp Ky Ky 10" Kes | Ps Ps 10
_K61 Koo K Kgo K 1070__q)5_ _p61070_

In which here the symmetry is retained. This approach is much simpler than the
previous ones as presented. It requires only two operations to impose a
boundary condition. More importantly, this technique can easily be applied to
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systems whose matrix is stored in a compact form which in necessary for
reducing memory demand. However, the technique does not permit elimination
of the equations associated with the I, nodes, which is its major disadvantage.

Example. Solve the magnetostatic problem defined by the following
nodes and characteristic elements.
3
e |n(le) n2e) | n@Be)| u |[J @ Q!
(A/ mZ) \
1] 1 3 2 [1000| O i \"”
2 1 5 3 1 0
3] 3 5 4 1 | 1500 @
@ 5
)
Node | 1 | 2 3 4 5
X 0] 0 2 3 3 , ,
Y |02 22 0| oA oA,
u\ ox* oy’
1
axzay:;
p=0
f=1J
With the boundary conditions: A; = A, = 0.
Intermediate calculations:
& =X;Y5 — Yo Xs by =vy;-V; Cf = X3 =X
a; =X;Y; —Y3X; by =y; - V: C; =X —X;
8 =X Y; VX bs =y - C =X =X
F X Yr .
Aezzl X, ygzi(bfcg—bzecf)zAREA of the eth element
L X5 Vs
€ [Xi|X2|[X3|Y1|Y2|Yys|bi|bajbs|Ci|Co|C3| A
/0|2 0|0 |2 |2 |0 |2 |-2]-2|0 |2 |2
/0|3 |2 |0|0|2|-2]2 |0 |-1|-2|3 |3
32 |3|3|2|0|2]|-2|]0 |2 |0 ]|-1|1 |1
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1

AA xHi Fj yoi V]

e

to =B fe
3

1% Element

11
u 10004,
S S
Y 4.1000- g, - 2
Kllz =K;1= :
4-1000- 44, - 2
K113 = Ksll = -
4-1000- , -2
l _ 1
2
4-1000- 1, -2

KL =K} =;
2% 4.1000- p, -2

a,=a,

2" Element

1
0'3

1
K2 =K2 =
12 21 4 11,3

&
=

1
KL =KZ =

13 31 4 ,

1

K2 =
22 44, -3

1

0

_4-y0-3
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ki =, ety vageres )+ gl 5,) {

;B
(0-0+(-2)(-2)=
(0-0+(0)(0))=0
(0-0+(-2)(2))=
(2-2+(0)(0)=
(2:(-2)+(0)(0))=

= om0 (- (D+ @)=

(-2(-2)+(-1)(-D)=
(-2)(2)+(-1)(-2))=
5(0:0+(-D@)-
(2-2+(-2)(-2)=
5(0:0+(-2@)=

(0-0+(3)(3))=

e

=0; f=0 A=2

05
1000- 4,

~05
1000- ,

0.5
1000- 4,

~05

1000- 4,
1

1000- 4,

f=0 A=3

0.4166

0
—-0.166

Ho

-0.25

Ho

0.666

Ho

-0.5

Hy

0.75

Ho
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3" element
axzayzizi; p=0, f=1500; A=1
H o Hy
1 e L
K11—4_#0_1(( 2)(2)+(-1)(-1)) "
K2 = K2 = ((0)(0)+(0)(0))=0
"My -1
KE=Ki=,——((D@+©O©)="
Mol Ho
, 1 _ 025
Ky = 4.’%.1(0 0+(1)(1)) 2
Ki=Ki= b (00+(@)="0%
4-p,-1 Ho
.1 125
33—4'1%_1(2 2+(1)(1)) 2

=t =t = ;1500 =500
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05 —05 0 0 0 0416 0 —-0.25
05 1 -05 0 0 0 0 0
1210010;10 0 -05 05 0 Of K2=:0 ~025 0 0.75
0 0 0 00 0 0 0
0 0 0 00 _0.166 0 —05
00 0 O 0
00 0 O 0
K,=2loo 1 -1 o0
Holo 0 -1 125 -025
00 0 -025 025
0417 -510* 025 0 —0.1666
_5.10¢ 10° -5.0"% 0 0
K=K +K,+K,= | 025 -5.10% 17505 -1  —0.25
ol g 0 1 125 -025
_0.1666 0 _05 -025 00916
0 0
0 0
t=|500] A=|A
500 A,
500 A

o O O o o

—0.1666
0
-0.5
0
—0.666

By application of Boundary conditions, we can obtain the following equation:

17505 -1  -05 ) A 500

-1 125 -0.25| A, |=|500 |4,
-05 -0.25 0.916 \ A 500

A, 3600.3 4.526

A, |=| 4000.9 |z, =| 5.027 |-10° Wb/m
A 3603.0 4.527

Example. Determine the elements for K and T matrix in the case of

diffusion equation:
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2 2
10 '§+a—f‘ =-J+ jooA
OX~ oy
o, = —i
X y P
p=jooc
f=1J
By use of the general equation for K and t
e 1 [} AT ) e EAE A e
Kij :4Ae(axbi bj +ayCi Cj)+ﬁﬂ (1+5ij) _{1 |=J
e ij - 0 - -
. =A7fe i #
3
we can write for each element:
b’ +c¢/  bb,+cc, bb,+cc, . 2 1 1

K= . bb,+cc, bl+cl
bb, +c,c; b,b, +c,c,
. 1
T= AJ 1
3
1

K becomes a complex matrix!

b,b,+c,C, |+ ] —wo|l 2 1

11 2
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Exercises to solve.

a) Determine the potential in the intermediate nodes.

(0.4 100 V (4,4)

(0,0) oV (4,0)

b) Determine the current density, and the total current in the
fuse showed in the following figure.

!1 1cm ;Jl
T V=1V
0.25cm
0.25cm
U:Lsz /m
56
2cm
thick = 0.1mm
0.25 cm
0.25 cm__ V=0V
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Nonlinear problems

In the analysis of electrical machines and other magnetic apparatus, the
problems becomes nonlinear due to the presence of ferromagnetic materials.
Good designs operate at, or near, the saturation point. The permeability
u=B/H is a function of the local magnetic field, which is an unknown at the

start of the problem. The permeability appears in all of the elements of matrix K,
and we must use an iterative process and keep correcting the permeability until
it is consistent with the field solution.

The most popular method of dealing with nonlinear problems in magnetics is the
Newton-Raphson method. We explain this method in the following pages.

For the Newton-Raphson method, the magnetic reluctivity, v :% as a function

of B? must be continuous and differentiable. A number of approximations are
possible from polynomials to exponentials.

Newton-Raphson method
Consider first the single non-linear equation:
9(x)=0

We would like to find the roots of g. We can expand the above equation around
x? in a Taylor series:

g(x)=g(x°)+jg
X

Keeping only the first order terms and rearranging, we can write:

o_ g(x°)
dg
From the initial estimation of x, x°, we can find other approximate value:

X=X

L0 9(x°)
X =X E!g[
dx

x=x°

and so forth:

© R. Bargall6. ELECTRICAL ENGINEERING DEPARTAMENT. EUETIB-UPC 28 of 47




EINITE ELEMENTS FOR ELECTRICAL ENGINEERING

NUMERICAL RESOLUTION: FE METHOD

Example. Solve the following equation:

f (x) = cos(2x) —; =0

X
cos(2x) — -
(2X) =3

—25en(2x)—;

df

deltax

0.1

0.93006658

-0.89733866

-1.0364722

1.1364722

-1.21409524

-2.02691319

0.59898729

0.53748491

0.20701633

-2.25915159

-0.09163455

0.62911946

-0.00706658

-2.40310059

0.00294061

0.62617885

-5.3502E-06

-2.39945083

2.2297E-06

G |WIN|P]|O

0.62617662

-3.1132E-12

-2.39944804

1.2975E-12

error versus iteration’s number

Consider the following multidimensional system of non-linear equations with
independent variables Xxi, X2,

© R. Bargall6. ELECTRICAL ENGINEERING DEPARTAMENT. EUETIB-UPC 29 of 47




EINITE ELEMENTS FOR ELECTRICAL ENGINEERING NUMERICAL RESOLUTION: FE METHOD

fL (X Xy s X))
F(x) = £, (X Xp ey X)) 0
) (X Xy e Xg)

Expanding in a Taylor series and truncating it after the first order terms gives:
I = x* f=—F (x¥)

Where J is the Jacobian matrix given by:

of,  of, of,
ox 0%, ok,
of, of, of,
0=l o, T ax,
5w 5
X, OX, X,

The k+1 approximation can be calculated by:

Xk+l — Xk —J_l(X)' F(Xk)
Xk+l_xk =—J _1(X)' F(Xk)
AXKt =3 7H(x)-F(x¥)

Application of the N-R method to an element

We consider here the two dimensional nonlinear Poisson equation for the
magnetic vector potential. We have found that the equations for a two
dimensional first order triangle are:

v ku |(ij kik AI A ‘]e
oK Ky K] A=l e
4A 3
kki kkj kkk Ak ‘Je
This equation could be written as:
f1 kii kij kik A| ‘Je
14 A
F=|f, =k k; Kyl A |- |=0
4A 3
fs kki kkj kkk Ak Je

To calculate the Jacobian, we differentiate these equations with respect to the
nodal vector potentials. For f; this gives:
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of, v 1 ov 0B?
L= ii+7(kiiAi+kijAj+kikAk)72

oA 4A 4A oB° oA
o, v 1 dv oB*
— = k. +—Ik. -+k--A +k

oA, 4A" 4A(“A‘ ! 'kAk)aB oA,
of, v 1 ov oB®
—t ="k +—(kiA +k A +k —
8Ak 4A ik 4A( IIAI ij"r IkAk)aBz 8Ak

The first equation for the N-R iteration is:

AllAA. aAlJAA+ AkAAk

v oB? 0B? oB?

— k. A ki AA; + K A k kjA; +k AA AA. A

o lian i an Hgan Je (G kA, + .kAk,aBz[aA A+ on A Ak}

=Y [k A+, A +k,kAk]+ J,

In matrix notation this becomes:

v AA 1 v (L 0B? k 0B? k OB? AA

E(kii kij kik AAj +4Aw[(zkinAnj aA, (z |nAnj (zkmAnjaAk] AAj
AAk n=lI i n=I n=I AAK

A
= L( k| kik A +é‘]e
AN ! A: 3

we now do the same for the second and third equations to get the whole

element equation:

k k k
zkinAn ZkinAn z
v kll I(ij klk AAI 1 81/ nk:i nk:i nk:i
A Ki Ky K| AA AA OB2 ijnAn ijnph Z
kki kkj kkk AAk ”;' nk:l nk:l
Zkknp‘n ZkknAn z
Vv ii ij ik AI A 1
= aal K ki K | A +§ 1
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The vector potentials here are taken for the previous iteration. We find a2

2

from the saturation curve representation. To evaluate

(33
OX oy

For triangular first order elements:

we proceed as

follows:

1 1 1
Azﬂ(ai +b, x+c, y)A +£(aj +bjx+cjy)Aj +£(ak +bkx+cky)Ak
oA Ab; +Ajb; + Ab,

x 2A

oA  AC +AC; + AC,

YR 2A

. :(Abi +AD, JrAkkaz{Aﬁci +AC, +Akcsz _(Ab+Ab +AD J +(Ac,+ Ac, +Ac, f
2A 2A 4N

0B 2b(Ab, + Ab; + ADb, )+ 2¢ (Ac, + Ac; + Ac,)

oA 4N

We can summarize the process as follows:

STEP PROCESS

1 Assume a value for v and A for each element and node

2 Evaluate the matrices K¢ using these values and the material
coefficients

3 Assemble the matrix in the normal way

4 Apply boundary conditions and solve for the AA vector

5 Find the new A by adding AA to the previous value of A

6 Apply a stopping or convergence test, such as the relative change in
AA is smaller than ¢

7 If the test fails, recomputed the matrix and repeat the process from
step 2

Permanent magnets (PM) modelling

The development of high energy permanent magnet materials such as SmCo
and NdFeB has led to increased interest in the use of permanent magnet
material in electrical machines and actuators. As mentioned in the last section,
ferromagnetic materials are characterised by a narrow hysteresis loop. In
contrast, hard magnetic materials such as PM exhibit wide loops. It is often
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acceptable to consider the magnetic characteristic of a PM by a straight line in
the second quadrant of the hysteresis loop. The intersection of the hysteresis
loop with the ordinate is called the residual or remanence flux density B, The
intersection of the abscissa and the loop is called the coercitive force
Hc. There are two possibilities for the modelling of a PM material:

e Magnetisation model
e Current sheet approach

Although these two methods have a different starting point, they both result in
the same set of equations. Assuming a straight line as the characteristic of the
PM material, there are only two parameters required to define the characteristic:

e The slope of the line g,
e The y-axis intercept B,

Magnetic vector model

The demagnetisation characteristic is defined by
B =t -((1+ 7,)-H+M)

where y,. is the magnetic susceptibility, M the magnetisation vector and H the
field strength at the operating point. In terms of the remanent flux density

Br = IUO ' M
The incremental permeability, the slope of the demagnetisation characteristic is

B
= (1
8\H‘ ,UO ( +Zm)

X. 1S a very small positive number so that the apparent permeability of the

magnet is only slightly larger than that of the free space. The reluctivity is
defined as

1

Ve — -
ﬂO'(l—'—Zm)

and applying this to the demagnetisation characteristic, yields
H=v-(B-u-M)
using the Maxwell equation for a magnetostatic problem:

VxH=J
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yields
Vx(v-B)=J+Vx(v-u,-M)
The second term, the magnetic vector, on the right-hand side represents a

source term and can be identified as an equivalent magnetic current. The matrix
T must be recomputed to include this term. This term can be computed with:

oN " °
J.J.VIUO( -M a]d dy_T Mx Cj _My bj
Ck bk

Example. Solve the magnetostatic problem defined by the following

nodes and characteristic elements.
3

@ Q O ¢

e |n(le)|n2e) | nEBe)| g |J M
(A/ mz) \ @
1] 1 3 2 |1000] © 0 "
2| 1 5 3 1 0 0 .
3 3 5 4 1 0 u, =1.05
B, =0.8T O Os

Direction of magnetization along y axis.

Node | 1 | 2 3 4 5
X 0] O 2 3 3 L(A &2
Y 0 2 2 2 0 lu(axz_i_asz:—J—}—Vx(v.luo.M)

With the boundary conditions: A; = A, = 0.

The K and T matrix are the same for the 1 and 2" elements, the third element
values are divided by the relative permeability y, =1.05:
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05 -05 0 0 0 0416 0 —-025 0 —0.1666
05 1 -05 0 0 0O 0 0 0 0
=1 | 0o —05 05 0o K,=2|-025 0 075 0 -05
10004, Ho
0 0 0 00 0o 0 0 0 0
0 0 0 00 _0166 0 —-05 0 —0.666
00 0 0 0
00 0 0 0
K,=1lo 0 0952 -0952 0
Holg 0 —0952 119 —0.238
00 0 -0238 0238
0417 -5.10° 025 0  —0.1666
| -510% 107 —510¢ 0 0
K=K, +K,+K,= | -025 -5.10" 17029 -0952 —0.5
ol g 0  -0952 119 —0238
_0.1666 O _05 —0238 0.9047

The major difference is in the right hand side where the current vector is
replaced by the magnetization vector using the above equation. In this case My
= 0 and the new vector T becomes:

8 0
0 0
_Mbs g2 0
I Y o I N0 -
) b, 7| 08y |7 e
. Lo | | 15238
Mb, | | 080 0
. 1.05

We can apply the appropiate boundary equations to solve the problem. The

vector potential solution is:

0
0
0.07701

Wb/m

—-0.60154
—-0.11574
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Transient solution.

We explain the case of the two dimensional transient magnetic problem. The
PDE in this case is:

V- (WA)- ZtA -J

The functional for this equation is:

1 oA
=2£j( {VA® ~23¢A+20° AL )dQ

The first and second terms are the same as those that are encountered in the
static case. The third term yields:

H( eAaAde ZZAIG ”NN dQ —iiA RE—

i=1l j=1 i=1 j=1

The system of equations in matrix vector notation can be written as:

KA+ R%T
ot

The solution is only computed at discrete points in time, spaced in finite
intervals At, the time steps. The Galerkin approach can be applied in the time
domain. First, we select the shape functions (of time, of course) as:

A(t) = arA + a(l— r)Ak_1
T@t)=ad, +all-7)T,,

with:

t_tk—l _t_tk—l

t —t., At
oA _oAdT _ A -A,
ot or ot At
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Then we apply the Residue minimization with ¢z as a weighting function:

jm{K(arAk rafi-o)A ) RA AL (a, + a(l—r)'l'k_l)}dr 0

After some algebraic manipulation, we obtain:

(aK +§JAk +((l—06)K _ZjAk—l —(aT, +(1-a)T,;)=0

Comments:
e This expression is unconditionally stable for ¢ >1/2.
e For a =1 this is also free of oscillations.

e For =0 we obtain the forward difference Euler method. This is an
explicit method because the term KA is evaluated at the beginning of the

time interval:
R R
[AtjAk = (K _AtjAk—l + (Tk—l)

e For a =1 it gives the backward difference fully implicit method since the
term KA is evaluated at the end of the time interval:

e Sa{Ehoo

e For a=1/2 it gives the Crank-Nicholson scheme:

1 R 1 R
FLH ‘((JK ‘AJA“ e boeta)

Voltage fed electromagnetic devices

Up to this point, we have assumed that the source of the magnetic field is a
current density J. In many cases, the system is voltage fed and the current in
the coil is an unknown. To solve this problem, both the field equations and the
coil voltage equation must be solved simultaneously. The voltage equation for
the coil can be written as:

U =ri+nd£
dt
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Where U is the voltage on the coil, r and n are the coil resistance and the
number of turns; @ is the magnetic flux (in Wb/m, we can justify this unit later)
generated in the solution domain and linked by the coil.

The current contribution of an element of the mesh is given by:

1
1
1

N
3

Where J is the current density and A° is the area of the element. Now define a
new parameter x as the coil turn density (turns/m?). If | is the current of one
turn, we have:

A turn carrying a DC current I, infinitely long in z-direction: only one unit in z-
direction is represented. Distance between conductors is d.

The x-y representation of the turn.

Let us now consider the flux (per unit length in z-direction) of B across a surface
that has the turn as contour. It reads, obviously:
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¢ (B) = [B-nds

where S is the surface of the turn for one unit in z-direction, and n is the
outward normal to S. By substituting in the above equation the expression for B
as a function of A:

(pS(B):ijA.nds
S

Application of Stokes theorem results in the following:

95 (B)= [A-d(+0S)

+B

where the line integral in the rhs is defined along the turn. On the basis of the
assumptions previously made, the flux of B can be rewritten as:

05 (B) = T Adz+ [ Ad(+c8) +T Adz
B +&B D

The first and third integral have, respectively, the following values: Ay and -A|

(the vector potential has the same value when the x- and y-coordinate of the
point do not change and the z-coordinate of the point changes). On the other
hand, the study was performed with reference of one unit in z-direction, and
moreover it should be noted that the integration path moves in opposite
directions along the conductors. The second integral is obviously negligible with
respect to the first and third since the wires are infinitely long: we studied just
one unit of their length in z-direction, but the extension of their active length is
infinitely greater than the length of the connections. We arrive at the following
formula:

9s(B) = A - A
for the flux by unity of depth. If the length is finite, the total flux is:
D (B)=(A -A)
As the zero magnetic vector potential value is usually present in the field
evaluation as a result of the calculation or by means of the Dirichlet boundary
condition, one can calculate the magnetic flux with respect to the null value and
then rewrite the above equation as

® = Al

Where A is the potential at any point in the solution domain. Further, assuming
that A is the average potential in a triangular element, we get:
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A=:13(Ai+Aj+Ak)

If n is the number of turns within the element, we get:

n=K"Ae:>nCD=K.3AI(Ai+Aj+Ak)
e A
nc1>="'3A'[1 1 1] A |=QA
A
Q="51f 1 4

Using Euler’'s scheme to discretize the time derivative, we obtain:

“lavaa)

Ak+D-A(K)
N9 =Q = 2 A K+D-A |- 2 (A -A)
A k+D- A, ()

_ i pd® _ Qa
U=ri+n it :>Uk—[r]lk+At(Ak Ay)

(K +ARJAk :(EJAM +(Tk):[§tjAk_l +Pl _+D,

Dy is a term related to the permanent magnet or other currents.

N=x-A°=>nd=

R R
U .
At At
We can also include an additional term to taken into account the external
resistance and inductance

I k-1

U :ri+nd¥()+rai+Laﬂ
dt dt

the final equation is:

I k-1

NN 1 o
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Coupling of field and electrical circuit equations.

Two types of conductors are often present in electrical machines. There can be
“thin” or “thick” conductors. In the first case the eddy currents must be
neglected.

Thick conductors

The following figure shows a thick conductor
with section S; and length |. We can write that:

a( avj_o
0z 0z

Thus, we can define a scalar electric potential
as:

N

V =V,z+V,
The voltage U; on the conductor is given by:

U, =V ai-vy
0 dz

The current density in the conductor is determined by:

J=0ok= O'(—aA—VVj =J= O'(—aA—de:o{ oA Vlj (—6A+Utj
ot ot dz ot ot |

and the total current in the conductor is determined by:

= s [ s, s

g =Jfo P :_Uagfdsﬁg;

S, 5, - S, t
oS,

Rearranging this equation, we can write:

U, =Rt|t+RtLjaa£ds

This equation shows that the voltage in a thick conductor is equal to the sum of
the voltage drop over the DC resistance and a voltage drop due to eddy
currents. This equation, with the addition of the field equation:
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V'(VVA):—J =—ot Z—G(—ZA\—VVJ:V-(VVA)—GZ?+O'L#:O

solves the problem.

Thin conductors

The figure shows a coil made of Ng, turns of thin
conductors with cross section s, serial connected. In
this conductor the current density is considered
uniform over the cross-section. We call Iy the current
in a conductor.

oA
V~(VVA)—68A+O'L:t=O oA Rt|t+RtJ‘_[O-gdSt
o V-WA)-c—+0o > U
u_ah+R”a—@s ot |
V- (WA)- 0— —f 7“’ —dS =0

S

As the induced current density UaatA is uniform over the cross section S, we can

write:
1 H —dS A

and substituting in the above equation, this is reduced to:

|
vﬁw&+§:0

If the total surface of the coil is S; =N we get:

CO !

vﬁwM+§mf=o

f

The voltage U; at the terminal of the winding can be written as:
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U, =N, U, =N_RI,+N_R, ”a—ds—

I OA
N — —d =N, I +N_ —0c—5=
co J.J. co O-at
NCOI +IS%
S ot
or

Uf:Nwo's'“Nws'fﬂZfd
I OA
= —[[Zd
Uf Rflf+NCOSf'!;[at

The first term is the voltage drop over the colil resistance. The second term is
the voltage induced in the coil. In the thin conductors domain, the equations
become:

| (oA
U, =Rf|f+NCOSf£fjatd

V- (WA)+ 2 (=0

f

Equations for the whole domain.

According to the above explained, the set of equations for an electromagnetic
device presenting magnetic materials, permanent magnets, thick and thin
conductors is:

V.(WA)+ 2 f aatAmUI_vx(v 1y M)

| (oA
U, =Rf|f+NCOngatd

utth|t+RtgaZtAds

After applying the Variational or Galerkin method to the above equations, a set
of matrix equations is obtained as follows:
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KA+ RaatA—Plf ~_PU, =D

Q'jtm R'l, =U,

d

alf :Uf

d "
QEA+R I, +L

Matrix R” is the d.c. resistance of the thin conductors windings and L is the
matrix of additional inductances. R’ is a matrix containing the DC resistance of
thick conductors. Matrices K, R, P, P’, D, Q, and Q’ are obtained by assembling
the element matrices:

Ky = [[VNjWN, ds
S,

Ry :jjloNﬁdes
Si

P, =£j I\slfj N, ds

]

if the node k belongs to the region of winding j, or Py; = 0 if node k is elsewhere.

O .
.
Py _J;j N ds
if node K is in the region of winding j, or equal to O elsewhere.

oN oN
D(k) = ||vu {MX"—M kjdxdy
[J ’ oy 7 ox

Qk"zﬂl\lsc:.klN"ds
J

S,

if node k belongs the region of winding j, or equal to zero elsewhere.

Q= [[Ryo N ;ds
Si

if node k belongs to the thick conductor k, or equal to zero elsewhere. Different
combinations of thin and thick conductors windings can be found in electrical
devices. We will not consider these here in detail: a complete formulation must
consider the connexion between the different coils and the restrictions in
voltage and current must be considered. In general form, we can write:

i =) D=[e.1]
[U f ]: [CS][Ul]; [Ut]: [C4][U2]
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Ui, Uy, I3 and I, are the external voltage and currents (for example a three
phase symmetrical system) and C;, C;, C3 and C,4 are the connexion matrices
that relate the external values to the internal values.

Movement modelling for electrical machines

The basic equations of motion are as follows:

dw
J ot +po=M,-M,
do
w=—2
dt
Where:
e Jis the moment of inertia
e p is the damping coefficient
 is the rotational speed
6 is the rotation angle
M; is the electromagnetic torque
M. is the externally applied mechanical torque.

All of the above pertain to the moving part. The following figure shows an
electric motor where the rotor is rotating. There is an important question:

t=t, t =T,+NAt

If the system is in movement, the matrix of the whole system are time-
dependent? The response is Yes! Apparently we need to recompute ALL of the
elements on the system matrices. If you construct a grid with a moving band in
the air-gap and only the elements in the air gap (or free space) are permitted to
deform, the conductivity o in such elements is zero, which nullifies the
contribution of the R, P’ and Q' matrices (additionally the elements of P and Q
matrices are also nulls because there are no conductors and current in the air).
Therefore, only the time dependence of the K matrix requires consideration: we
only need to recompute the values of the elements in the moving band.
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It is adequate to create three or four layers in the air gap and apply the moving
band to the intermediate layers. These layers are in free space.

Example. The following sequence of pictures shows the evolution of the
temperature in a slot of an electrical machine. Initially the machine is hot.
At t = Os the machine is disconnected from the network and remains
motionless. The temperature falls to ambient values.

LY
.

t=0s, t=5000 s, t=10000 s, t =15000 s, t=20000s.
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8000 10000 12000 14000 16000 18000 20000 22000
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0 2000 4000 £000

© R. Bargall6. ELECTRICAL ENGINEERING DEPARTAMENT. EUETIB-UPC 47 of 47







NUMERICAL SOLUTION:
INTEGRAL EQUATION METHQOD

. (%
r_-__-,..pA.T - H_} el ;‘f; L% ¥y |
e e .
o : x,_:& \“x
Vi . —i=th node
= - Q\-\
A & e,
: 3 {}{_2. W) -
o o < :{'—







FINITE ELEMENT METHODS FOR ELECTRICAL ENGINEERING IEM

INTEGRAL EQUATION METHOD

An integral equation (IE) is any equation involving an unknown function ® under the
integral sign.

The Linear integral equations that are most frequently studied fall into two categories
named Fredholm and Volterra. The following table shows the first, second and third
kinds of these (for the one-dimensional case)

Kind Fhedholm Volterra
1 b X
F(x) = [K(x1)-®(t)-dt f(X) :jK(x,t)-cp(t)-dt
2 b X
f(x) = d)(X)—/t-jK(x,t)-@(t)-dt f(x) = (D(x)—/i-J.K(x,t)-CD(t)-dt
3 f(x)=a(x)-d)(x)—/l-iK(x,t)-CD(t)-dt f(x)=a(x)-CD(x)—/i-.X[K(x,t)-CD(t)-dt

Where A is a scalar (real or complex) parameter. Functions K(x,t) and f(x) and the
limits a and b are known, while ®(x) is unknown. The parameter A is sometimes

equal to unity. The function K is known as the kernel of the integral equation. Notice
that in the case of Volterra Integral equations the upper limit of integration is a
variable.

If f(x)=0, the integral equations become homogeneous.

Connection between differential and integral equations

Most ordinary differential equations can be expressed as integral equations, but the
reverse is not true. While boundary conditions are imposed externally in differential
equations, they are incorporated within integral equations.

For example, consider the following differential equation:

9 _ @) a<x<b
dx
(D(a):cl

Integrating we obtain a Volterra equation of the second kind:

d(x) = JX' F(t,®(t))-dt+c

Another example:

2
00 _Fxd), asxshb
dx
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Integrating once yields:

dd(x)
dx

= j F(x,d(t))-dt + '(a)
Integrating again (by parts) we obtain:

d(x) :CD(a)+(x—a)'(D'(a)+j(x—t)- F(x,®)-dt

Green’s functions

A more systematic means to obtain an IE from a PDE is by constructing an auxiliary
function known as the Green’s function for that problem. The Green’s function, also
known as the source function or influence function, is the kernel function
obtained from a linear boundary value problem and forms the essential link between
the differential and integral formulations.

To obtain the field caused by a distributed source by the Green’s function technique,
we find the effects of each elementary portion of source and sum them up. If
G(r,r) is the field at the observation point (or field point) r caused by a unit point
source at the source point r’, then the field at r by a source distribution g(r’) is the
integral of g(r’)G(r, r’) over the range of r’ occupied by the source. The function G is
the Green’s function. Thus, physically, the Green’s function represents the potential
at r due to a unit point charge at r’. For example the solution to the problem:

Vid=g in R

d=f on B

Is given by:
1 1 1 6G
®=[g(r)-G(r,r)-dv+ff-—>.ds
. 5 on
Where n denotes the outward normal to the boundary B of the solution region R. It is
obvious that the solution ® can be determined if the Green’s function G is known. So
the real problem is not that of finding the solution but that of constructing the Green’s
function for the problem. We now illustrate how to construct the Green’s function G
corresponding to a PDE. It is usually convenient to let G be the sum of a particular
integral of the inhomogeneous equation LG =g and the solution of the associated

homogeneous equation LG =0. We let
G(r,r')=F(r,r)+U(r,r’)

Where F, known as the free-space Green’s function or fundamental solution,
satisfies:

© R. Bargallé. Electrical Engineering Department. EUETIB-UPC 2de 19




FINITE ELEMENT METHODS FOR ELECTRICAL ENGINEERING IEM

LF =o(r,r') in R
And U satisfies
LU=0 in R

So that by superposition G = F+U satisfies LG = 6(r,r"). Also G =f on the boundary B
requires that:

U=-F+f on B

Notice that F need not satisfy the boundary condition. For L =V? the fundamental
solution F is equal to

1
F=_Inr
° 27 for the two-dimensional case and
r=-/(x=x)? +(y-y)?
. 11
° A v for the three-dimensional case

r=/(x=x)? +(y-y)? +(z-2)*

The Green’s function of each case is equal to:

G=F+U :F:ilnr+u
2
G=F+U :F:——1 -1+U
4-r r

U is chosen so that G satisfies prescribed boundary conditions.

The following table shows some Green’s functions that are commonly used in the
solution of electromagnetic related problems.

Operator Laplace’s Steady-State Modified steady-
Equation Equation Helmholtz’'s state Helmholtz's
equation equation
VG +k?-G=45(r,r) | V’:G-k*>-G=45(r,r)
Solution’s VG =6(r,r)
region
1-dimensional No solution _iejkqx_xv‘) _ie—ik(\x—*\)
2k 2k
2-dimensional 1 j j
—Inr —=H,(k-r —=K,(k-r
o ;Holken) S Kolkem)
3-dimensional _i 1 1 ejk(‘x_x") _ 1 e_jk(‘x_x")
d-r v Ar-r Az -r

With the aid of the Green’s function, we can construct the integral equation

corresponding to the Poisson’s equation:
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As

vy =-*
&

V=[£.6(rr)-dv
&

In three dimensions this equation results in:

THE MOMENT METHOD

V=J’£.i.£dv

c 4-rr

The moment method has been applied to so many EM problems. We will consider a
typical problem: the determination of the capacity of a strip transmission line (or a
grounded system). Consider the strip transmission line of the following figure.

H/2

H/2

If the line is assumed to be infinitely long, the
problem is reduced to a two-dimensional problem
in a plane. Let the potential difference of the strips
be V = 2U V so that strip 1 is maintained at +U V
while strip 2 is at —U V. Our objective is to find the
surface charge density p(x,y) on the strips so that

the total charge per unit length on one strip can be
found as

Q =[pd
Q is the charge per unit length as distinct from
the total charge on the strip because we are
treating a three-dimensional problem as a two-
dimensional one. Once Q is known, the
capacitance per unit length C, can be found from

_Q
Vv
To find p(x,y) using the moment method, we

C,

divide each strip into n sub-areas of equal width A so that sub-areas in strip 1 are
numbered 1,2,....,n, while those in strip 2 are numbered n+1, n+2,........ , 2n. The
potential at an arbitrary field point is:

Vi =] p(x',y')-ln(

R

r0

R=-/(x—x) +(y-yY
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Since the integral may be regarded as rectangular sub-areas, the potential at the
centre of a typical sub-area S; is

Or

Where

A=

Zﬂgjm[rojdx

Rj is the distance between the ith and jth sub-areas, and A;-p; represents the

potential at point | due to the sub-area j. In the above equations we assume that the
charge density is constant within each sub-area (this is true if the areas are small
compared with the total dimensions of the strip). For all the sub-areas we have:

j=2n j=2n
V1=JZ;,A11'P1=U Vn+1:ZA(n+1)j'pj:_U
Z =
j=2n
V, = ZAZj pp=U
j=1

j=2n

...... V,, = ZlA(Zn)j p;=-U
J:

j=2n

Vo= 2 Ayp;=U
j=1

Then we obtain a set of 2n simultaneous equations with 2n unknown charge
densities. In matrix form

Ay Ay A1,2n Pu U
Ay Ay A2,2n P2 _ U
A2n 1 A2n 2 e A2n,2n Pan -U

A-p=U
p=A"-U

It is easy to show that the elements of matrix A can be reduced to:

A R; o
o [ i # j
2-w-¢€ r
A

2-7:.5'{'”(2}—1-5} i= ]
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I, IS @ constant scale factor commonly taken as unity.

The following table presents the computed value of the capacitance per length unit
for a different number of segments per strip, n. H=2m; W=5m; ¢=¢,.

n 3 7 11 18 39 59
C (pF) | 62.8 | 65.29 | 66.05 | 66.18 | 67.08 67.22

Example. Consider a square conducting plate 2a meters on a side and lying on
the z = 0 plane, with centre at the origin, as shown in the following figure.

Let p be the surface charge density

Y on the plate, assumed to have zero
thickness. The potential at any point

in space is:
2a/ /
(1P
X V(xy)=J[£, 0 dxdy

2b/ / 4
R=-/(x=x) +(y-y) +(f
2b
2a The boundary condition is V = U

(constant on the plate). The unknown
to be determined is the charge density and the capacitance of the plate. Consider the
plate divided into N square subsections, as shown in the above figure. Using the
results from earlier, we can write:

n=N
Vm = zAmn *Pn
n=1

Where:

dy

B , 1
A = ALdX Agn 47zg\/ (x, =x') +(y, -y

onS

n

out

1
To simplify the solution we define the following function: f, :{O in this case

N
we can write: p(X,Yy) ~ Zan - f, and finally we obtain the following expression:
n=1

N
V&Y A,-a for m=12..N
n=1

In this case the capacitance can be calculated as

ipsn
_g_J‘/XjSszl J NEN . _N g
C—V— T NUZa” S,=> AMm-S,

n=1 n=1
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. 2
For numerical results the A, elements must be evaluated. Let 2b -2 denote the

N
side length of each S, :
1 m=n 2—bln(1+ﬁ)
. . e
A = Jdx | dy'= S, b?

A Ay, 472'8\/(Xm - X')2 + (ym - y')2 m#n =

47[6Rmn B ﬂ-‘c"\/(xm _Xn)2 +(ym - yn)2
Consider the following case (this corresponds to a grounding system of an electric
central unit):

2a-2a=20-20=400m?; 2b-2b=10-10=100m?; N =4

These values yield:

8.82
A11:A22=A33=A44:7
e
2.50
Au :A21 :A23 = Asz =----:'6‘41 :A14 =
nE
1.76
A13:A31:A24:A42:7
nwE
882 25 176 25
_ 1125 882 25 176
" 7ze|176 25 882 25
25 176 25 8.82
0.132 -0.0287 -9.97e-3 -0.0287
Al -0.0287 0.132 -0.0287 -9.97e-3
mn = 7TE|
-997e-3 -0.0287 0.132 -0.0287

-0.0287 -9.97e-3 -0.0287 0.132

And the capacitance is:
N N
C~ JZan ‘AS, =Y A'm-S, =718.1¢, pF
n=1 n=1

¢ :L&l=35.90 pF/m

2a-¢, 20

The following table shows capacitance per unit length calculated by using the above
equation for various sub areas:

Number  of | 1 4 9 16 25 64 100 225
sub areas (N)

C (pF/m) 3151 | 3590 |37.32 | 38.18 |38.71 | 39.51 |39.78 |40.12
2a-¢,

A good estimate of the true capacitance is 40 pF/m.

© R. Bargallé. Electrical Engineering Department. EUETIB-UPC 7 de 19




FINITE ELEMENT METHODS FOR ELECTRICAL ENGINEERING IEM

BOUNDARY ELEMENT METHOD (BEM)

The basic idea of the BEM is to discretize the integral equation using boundary
elements. The well-known moment method is equivalent to BEM when using sub-
sectional bases and the delta function as weighting functions. Thus, BEM can be
regarded as a combination of the classical boundary integral equation method and
the discretization concepts originated from FEM.

Consider the case of the Laplace’s equation, i.e.

Viu=0inQ
u=u in T,

ou — .
=—=q InT
q an q 2

[=I,+T,
By application of the weighted residual method we obtain:
'[Vzu ‘W -dQ=0
Using the following identities:

V(VuW )= V2uW +vuvw
V(UVW )=uV?W + Vuvw

And applying the Gauss theorem, we can write:

w-va.do=[w-Y.dr-fu. dF+uV2WdQO
J J I J

on

The weighting function W is chosen to be the fundamental solution, determined
earlier:

VW =8(r-r')

Thus the domain integral in the above equation can be
written as:

ju-VZW-dQ:—Iu-5(r—r')-dQ:—

Q Q
For any point inside the domain. Combining the above
equations, the following integral relation is obtained:

u—W—dF'[ %dr
on ¢ on
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Performing similar mathematical manipulations we can obtain the following integral
relation for the Poisson equation(vzu =—f):

j dr ju -dr— ijdQ

Notes:

. ou : o
e Neumann boundary conditions (a—) are taken into account by the first integral
n

e Dirichlet boundary conditions (u) are taken into account by the second
integral.
e Any source point ( f) inside the domain Q is taken into account by the

domain integral in the above equation.

e From the Poisson’s equation, the residual to be minimized can be written as:

[(veu+f)w-da=0

Q

When the observation point “i” is located
on the boundary I, the boundary
integral becomes singular as R
approaches zero.

To extract the singularity on the
boundary, we rewrite the equation

ow

u, =|W.-— dF '[ ——.dr
8n ¢ on
In the following form:
jw -dr+ jw .dr— u—dFj%dF
I'-AT an I'-AT an A an
We present in detail the two-dimensional case. In this case:
W :—ilnr
2
And:
jw = dF———J'Inr = dF——lllm{J‘Ine . de}
7[5—)0
021
—'[ —dF———J‘— :——Ilm I—u -£-d0 | = l-ui
27 ¢0 5 € 27r

Substituting in the earlier equation we obtain:

© R. Bargallé. Electrical Engineering Department. EUETIB-UPC 9de 19




FINITE ELEMENT METHODS FOR ELECTRICAL ENGINEERING IEM

oW

C U, = W — dF j —.dr
6n oooon
Where:
1 ieQ
C = 1—02_ Loiel
27
0 izQ

If we consider Poisson’s equation:

ijdQ ijdmijdQ

Q-AQ

71- &0

jf-w-dQ:—ijf-lnr-dQ_—inm jlng f.e.d0-de|=0
AQ 27Z-AQ

The final equation is:

cu_W—dFj

oW W ar—[ -w-do
on 5

ooon

In general either u or au on the boundary must be known. Determining all values of
n

solution u and its normal derivatives on the boundary the solution at an arbitrary point
of the domain can be calculated. The electrostatic and magnetostatic problems are
then defined by the following equations:

c @ = jw .dr— j@ dr+jpw dQ

on on

c,-A = jw ndr jA - dr+ijWdQ

Where ® denotes the electrostatic potential and A is the magnetic potential vector.

Boundary element discretization

The basic idea of the BEM is to discretize the boundary of the domain under
consideration into a set of elements. The unknown solution over each element is
approximated by an interpolation function, which is associated with the values of the
functions at the element nodes, so that the integral equation can be converted into a
system of algebraic equations. The boundary geometry can be discretized in a series
of elements.
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The simplest solution is to use a set of constant boundary elements (other solutions
are available, such as linear or quadratic elements). The geometry of the constant
boundary element for the two-dimensional case is shown in the following figure.

b

(X4, ¥q)

Using the constant boundary element approximation the integral equation formulation
of the problem defined by the Poisson’s equation becomes:

fw-dr-u, - [Par |- [ fw-do

P r P on a,

X ou
G i:Z %

Where f is the constant value of the source on segment domain containing sources.
Introducing the following notation

ou

onl, =Q;

uj:Uj

G, = [Wdr
l—‘J

H, =j%-dl“
7 on

R:—jf-w-dQ
QS

The above equation can be written for each i as
=M

G-l = Z[Gij -Q-—H; 'Uj]+Pi
j=1
This algebraic equation system can also be written in matrix form as follows:

HU=G-Q+P
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Example. Solve Laplace’s equation in a rectangular box. At the horizontal
boundary lines the potential u =U are prescribed. At the vertical boundary lines

the normal derivative g is given.

b .
¢ We use constant elements for the solution. For
. . I simplicity we use a coarse discretization with 4
u=100 elements. In this case only the boundary values
Uz, Ug, 01 and gz are unknown. For each element
=] we need to calculate the following expression:
j=
Node 4(pq=0 q=0 (2 Node?2 CI.UI_Z{ .[W .dr-= U J'i dr} jf.W.dQ
= Q,
- In our case:
o f=0.
ujol , « 1 ieQ
0, -6, 1 .
Node 1 p, o c ={1-22 11T 2 er
27 2r 2
0 1¢Q

We can write:

jvv -dr'-u, ji dr]

E :Zlau

in this case four equations for the four unknown boundary values are obtained if “/”
takes the values 1 to 4. In matrix notation these equations are:

u, u, a, G J'W dr W:—ilnr
;_ u, =H~u2 +G'% : : w 27[1

Us Us s H, _J'i dr 7:_7%

u, u, d. dn 2T r

Calculation of matrix elements
° H12 and Glz

i n 13 2 1

H, = 7j7 dy =—-atan(2y) =0.2110
Node 3 12 2
, oUe I ZﬂO(yz+(%)j 27 0
Direction 2
1 2
of - 2 X —
n +— integration Crz 271"([“1( (y +%) )J a
2
2 G, :j.[y-ln( (yz +(%)2D—2y+atan(2y)} —_0.0175
Node 4(] D Node 2 4 0
Due to the spatial isotropy of the problem, we
S 2 —n can write:
B
" H,=Hy=Hy;=H,
2 19 ’ X Gy =Gy =Gy, =Gy,
Node 1 p These symmetries do NOT hold in general for

BEM.
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o H23 and Gz3
Y n 0 0
1 1 1
H,=— -dx=—-atan(x-1) =0.125
. NOS? 3 23 272__'1. (X _1)2 ¥ (1)2 o .
. . 0
Diracton Goo= 1 [inf (=17 +@F)) ax =
n +—f 3 integration 27 4
x—g 1 11 2 2 ’ _
o E(x—1)|n (x-1)* + (1)° ))- 2(x-1) + 2atan(x 1) | =-0.0210
y/a
Node 4 (] > Node 2 !
7 Due to the spatial isotropy of the problem, we can
£ p py p
S write:
Hy=Hy=H,=Hy;
o « G21 = G41 = G43 = st
Node 1 1
e His and Gis
y 0 0
H, = ! J‘;-dx:iatan(l—l) =0.0780
27 12 , 27 2 4
2 [(x—z +(2) ]
Dfirection 10 ( ( )2 ()2)
o G, =——|Inl((x-1)" +(2)"))-dx =
n +— integration ? 2”'!.
! ~[1(x—l)ln[([x—l) +4D—2x+4atan(x—l)} =-0.1119
27 |27 2 2 2 4
Node 4(] 7 Node?2 '
And by symmetry:
.
Ha =Hy,
G31 = GlS
1 X
Node 1
o Hjy and Gos
4 i H,, = 1} ! dy = ! atan(y 1)0—0250
] Node 3 | “2ry (0 +(y-1)) 2z 2
L 1 0
Direction G, =?f|n( (y-1)* + (@) ) dy =
of U
n+— ™ = 4 integration 1 1 0
N ~[(y ~pin((y -1 + @p))-2y+ 2atan(y—1)} = 00420
X M 2 |2 5
Node 4(] j Node 2
1y
g
/ —*n
/
g _
- 1 x
Node 1 |
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e Diagonal terms H,=H,=H;;=H, =0. Because the vector ris

perpendicular to n when the load point and field point are located at the same
element.

e Diagonal terms G;; to G44. Making a change of coordinates such that

L
&

Where L is the element length. After some algebraic manipulations we can write:

Point2
G; ZL f In(lj-dr =1~L-(|n(2j+1J
2” Pointl r T 2 L

The numerical values are:

r =

G, =G, =0.2695 (L=1)

G, =G, =03183 (L=2)

Assembling the above equations yields:

Uy U 0,
1 U, —H. U, ey a,
2 | U, Us s

| Uq | U, a,

[u, | 0 0.2110 0.0780 0.2110] |y,
1)Uy 0.125 0 0.125 0.250 U, N
2 | Uy 0.0780 0.2110 0 0.2110 | | u,

|u, | 0125 0250 0.125 0 u,

0.2695 -0.0175 -0.1119 -0.0175| | q,
N —-0.0210 0.3183 -0.0210 -0.0420 19
-0.1119 -0.0175 0.2695 -0.0175] |q,
—-0.0210 -0.0420 -0.0210 0.3183 | |q,

Substituting the known values:

u, _ U, | | 9% _ 0
Up | (100 |d;| |ds
u, u, a, 0

We can solve the resultant system of equations and obtain the following result:
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u, 0 a, —75.77
u, | |50 |9,| 0
u, | 100 |aqs| | 75.77
u, 50 d, 0

Numerical Integration

The above example shows the difficulties of making an analytical solution for the
integrals involved in this method. It is convenient to use a numerical method to
compute those integrals. The most used method is the Gauss integration method. In
the following pages we show the practical application of this method.

The integral can be approximated as:

| :if(x)dxzb;aiwi . f(zi -(b—a;+(a+b)j+E

i=1

Where N is the number of integration points, z; is the coordinate of the ith integration
point, w; is the associated weighting factor and E is the error. Values of z; and w; are
listed in the following table. Values for more points can be obtained in numerical
methods references.

N +7, Wi
2 0.57735 1

3 0 0.88888

0.77459 0.55555

4 0.33998 0.65214

0.86113 0.34785

5 0 0.56888

0.53846 0.47862

0.90618 0.23693

6 0.23862 0.46791

0.66121 0.36076

0.93247 0.17132

7 0 0.41796

0.40584 0.38183

0.74153 0.27970

0.94911 0.12948

8 0.18343 0.36268

0.52553 0.31370

0.79666 0.22238

0.96029 0.10123

In our case, the integrals for G and H can be calculated by application to the
following equations:
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L=J(x2—x1)2+(y2—y1)2
AX=(X2_X1)' B=(X2+X1)- A (V.= ¥). B (Y2 + Y1)

2 2 Yy 2 T
A
N, =2 N, =25
L L

R — (Xp Zxk). _ (yp _Zyk)
xk Rk ’ yk Rk
1 L 1
Giz——) In(—)w
ij 2.0 2 kz=1: (Rk) k
Hoa_ 1 L.ink Ny +Ry N
ij — k
2-r 2 1o R,
Where:
* X, Yp are the coordinates of the collocation point.
e L is the element length
e Ny, Ny are the components of the unit normal.
e Ry is the distance from the collocation point to the Gauss integration points on

the boundary element.
¢ Ry, Ry are the radius derivatives.

In our case and as a result to the application of the above algorithm we obtain the
same values for the matrix coefficients.
Computation of solution into the domain

Using the general expression we can write:

1M éu
C U = Z[a

~J.W-d1“uj-jﬁw-dl“}
j T T

| onij on
1 eQ
_ 0, -6, r 1 . . , . ,
In our case:c, =q1-—2——+=1-"—=>iel' we obtain the following equation, valid
2r 2r 2
0 1¢Q
for each interior point:
=M
u, = u .jw.dr_uj.jaﬂ.dr
1| onlj 7 oon

For example, determine the potential at point (0.5;1). By application of the above
algorithm we obtain the following values:
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U, =Gy, +G;,0, +Gi3q; +G;,q, + Higuy + Hipu, + Higuy + Hyu, =
=0.00618-q, —0.1049-q, + 0.00618-q9, —0.1049-q, +

—-0.1476-u, —0.3397-u, —0.1476-u, —0.3397 -u, =
=0.00618-(-75.77)—0.1049-(0) + 0.00618- (75.77) —0.1049- (0) +
- (— 0.1476-(0)—0.3397-(50) - 0.1476-(100) —0.3397 - (50)) =

=48.73
Comparison with the analytical solution
The analytical solution is the following:

u=50-y

It is easy to verify that this solution is compatible with all of boundary conditions.
The fluxes in x and y direction are:

du

q,=-——=90-€,-n

dy
a, =0

The following table summarizes the analytical and numerical results for every point

Point Coordinates | U (analytical) U(numerical) | Q(analytical) | Q(numerical)
1 (0.5;0) 0 0 -50 -75.77

2 (1;1) 50 50 0 0

3 (0.5;2) 100 100 50 75.77

4 (0;2) 50 50 0 0

Interior | (0.5;1) 50 48.73 50

The comparison between analytical and numerical solution shows the following:

e For the potential (Dirichlet variable) u even a coarse discretization leads to
good accuracy.
e The larger error for the flux (Neumann variable) q can be explained by the fact
that the differentiated quantity requires finer discretization because integration
smoothes while differentiation creates roughness.

If you use a finer boundary mesh with, for example, six constant elements of length
1, you could obtain the following matrix equation:
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0.5 —-0.1762
—-0.1762 0.5
—0.0936 0
—0.0780 -0.0348
—0.0936 —-0.0826
|-0.1762 —0.1476
[ 0.2695  0.0533

0.0533  0.2695
—-0.0750 0.0072
—-0.1120 -0.0708
—-0.0750 -0.0553
| 0.0533 -0.0062
u] [0 [a]
u2 u2 q2
U | [ Us | | D
u, | [100] |q,
u5 u5 q5
_u6_ u6 B _qG_

—0.0348 -0.0780 -0.0348
0 —0.0936 -0.0826
0.5 -0.1762 -0.1476
—-0.1762 0.5 —-0.1762
—-0.1476 -0.1762 0.5
—0.0826 —0.0936 0
-0.0708 -0.1120 -0.0708
0.0072 -0.0750 -0.0553
0.2695 0.0533 -0.0062
0.0533 0.2695  0.0533
—-0.0062 0.0533 0.2695
—-0.0553 -0.0750 0.0072
o,
0
0
s
0
L 0 _

The solution of the above system of equations is:

[~56.39 ]

23.87
76.13
56.39
76.13
23.87

-0.1762 [ u,
—0.1476 | | u,
—0.0826 | | u,
~0.0348 | |u,

0 Ug

05 | [Ug
0.0533 | [ q,
-0.0062 | | q,
~0.0553 | | g,
0.0708 | |q,
0.0072 || s
0.2695 | | g |

The following table summarizes the analytical and numerical results for every point

Point | Coordinates | U U(numerical) | Q(analytical) | Q(numerical)
(analytical)

1 (0.5;0) 0 0 -50 -56.39

2 (1,0.5) 25 23.87 0 0

3 (1;1.5) 75 76.13 0 0

4 (0.5;2) 100 100 50 56.39

5 (0;1.5) 75 76.13 0 0

6 (0;0.5) 25 23.87 0 0

In this case the solution is more accurate as the earlier and coarse solution.
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Comparison of the FE and BE Methods

We comment here on some of the major differences between the two methods.
Depending on the application some of these differences can either be considered as
advantageous or disadvantageous to a particular scheme.

FEM BEM OBS.
An entire domain mesh is required. | A mesh of the boundary only is| (1)
required.
Entire domain solution is calculated | Solution on the boundary is calculated | (2)
as a part of the solution. first, and then the solution at domain

points (if required) are found as a
separate step.

Reactions on the boundary typically | Both u and q are of the same |-
less accurate than the dependent | accuracy.

variables.

Differential Equation is being | Only boundary conditions are being | (3)

approximated. approximated.

Sparse  symmetric matrix is | Fully populated non symmetric | (4)

generated. matrices are generated.

Element integrals are easy to | Integrals are more difficult to evaluate, | (5)

evaluate. and some contain integrands that
become singular.

Widely applicable. Handles | Cannot even handle all linear | (6)

nonlinear problems well. problems.

Relatively easy to implement. Much more difficult to implement. (7)

(1) Because of the reduction in size of the mesh, one often hears of people saying that the problem
size has been reduced by one dimension. This is one of the major pluses of the BEM - construction of
meshes for complicated objects, particularly in 3D, is a very time consuming exercise.

(2) There are many problems where the details of interest occur on the boundary, or are localised to a
particular part of the domain, and hence an entire domain solution is not required.

(3) The use of the Green-Gauss theorem and a fundamental solution in the formulation means that the
BEM involves no approximations of the differential Equation in the domain - only in its approximations
of the boundary conditions.

(4) The matrices are generally of different sizes due to the differences in size of the domain mesh
compared to the surface mesh. There are problems where either method can give rise to the smaller
system and quickest solution - it depends partly on the volume to surface ratio. For problems involving
infinite or semi-infinite domains, BEM is to be favoured.

(5) BEM integrals are far harder to evaluate. Also the integrals that are the most difficult (those
containing singular integrands) have a significant effect on the accuracy of the solution, so these
integrals need to be evaluated accurately.

(6) A fundamental solution must be found (or at least an approximate one) before the BEM can be
applied. There are many linear problems (e.g., virtually any non homogeneous equation) for which
fundamental solutions are not known. There are certain areas in which the BEM is clearly superior, but
it can be rather restrictive in its applicability.

(7) The need to evaluate integrals involving singular integrands makes the BEM at least an order of
magnitude more difficult to implement than a corresponding finite element procedure.
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EINITE ELEMENTS FOR ELECTRICAL ENGINEERING COMPUTATION OF OTHER QUANTITIES

COMPUTATION OF OTHER
QUANTITIES. Post-processing

The purpose of post-processing is to derive extra information by the use of
direct solution (usually potential in nodes)

The first result is, usually, graphical information. This information is useful to
control, in first approximation, the validity of solution: in a symmetrical device,
such as an electrical machine, the result must be symmetric.

e Contour plot of constant-value lines of potential, i.,e. A=KorV =K.

The above figure shows an electrostatic case. The lines shows the constant
potential lines in the system. The arrow lines indicate the electric field intensity
E. This drawing is useful to show the approximate direction of the field.
Remember that

av

E=——
dn

Also E is perpendicular to V.

The following figure shows the lines of constant vector potential A in a
synchronous machine. These lines are lines of constant induction:
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A=K= SIA:O:B

k

n

e Field maps. The use of coloured bands or shading to display elements
subject to stresses in specific ranges, e.g. 0.1 t0 2.2 T in 0.1 T bands, is
of considerable help when evaluating a design. It is also usually possible
to pick a point to obtain the actual stress at this point. The following
figure shows the map of Electric field intensity E in a device.

1.155e+001 : =1.216e+0101
1.095e+101 : 1.155e+101
1.035e+101 : 1.096e+H101
9.741e+000 - 1.035e-+001
9.136e+000 : 9.741e+000
8.532e+000 : 9.136e+000
7.927e+000 : §.532e+000
7.322e+000 : 7.927 e+000
6.718e+000 - 7.322e-+000
6.113e+000 : 6.718=+000
5.509e+000 : 6.113e+000
4.904e+000 : 5.509e+000
4.300e+000 : 4.904e+000
3.695e+000 - 4.300e-+000
3.091e+000 : 3.696=+000
2.486e+000 : 3.091e+000
1.862e-+000 : 2.456e-+000
1.277e+100 : 1.852e+000
6.725e-001 - 1.277e+000
<B.792e-002 : 6.725e-001

ensity Plot: [E[, ¥/m

jw)
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The following figure is a map of induction machine. The stator teeth are highly
saturated as indicated by the coloured field map.

2.250e+000 : »2.359e-+000
2.132e+000 : 2.260e-+000
2.013e+000 : 2.132e-+000
1.895e+000 : 2.013e+100
1.777e+000 : 1.885e+000
1.658e+000 : 1.777e+100
1.540e-+000 : 1.655e-+100
1.421e+000 : 1.540e+100
1.303e+100 : 1.421e+100
1.184e+000 : 1.303e+100
1.086e-+100 : 1.184e+100
9.476e-001 - 1.066e+000
8.292e-001 : 9.476e-001
7.108e-001 : 5.252e-001
5.923e-001 : 7.108e-001
4.739e-001 : 5.923e-001
3.555e-001 : 4.739-001
2.371e-001 : 3.555e-001
1.186e-001 : 2.371e-001
<2.001e-004 : 1.186e-001

ensity Plot: |BI, Tesla

[w)

=5.750e+000

5.500e+000 : 5.750e-+000
5.250e+100 : 5.500e+000
5.000e+100 : 5.250e+000
4.750e+100 : 5.000e+000
4.500e+100 : 4.750e+000
4.250e+100 : 4.500e+000
4.000e+000 : 4.250e-+000
3.750e+000 : 4.000e-+000
3.500e+000 : 3.750e-+000
3.250e+000 : 3.500e-+000
3.000e+000 : 3.250e-+000
2.750e+000 : 3.000e-+000
2.500e+100 : 2.750e+000
2.250e+100 : 2.500e+000
2.000e+100 : 2.250e+000
1.750e-+000 : 2.000e-+100
1.500e-+000 : 1.750e-+100
1.280e~+000 : 1.500e+100
=1.250e+000

ensity Plot: ], MAm2

(e

The following figure shows a typical point value table.
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FEMM Output

Paoirt: x=20, y=0

A =3E6615e-005 + | 0.00303441 Whitn
|B] =0607624 T

Bx =0.30192-j0.0M152176 T
By =0.00501614 -j 0527062 T
[H] = 33.6964 Afn

Hx = 331934 - j 1.67303 Adm
Hy =0.551479 - 579457 Afm
mu_x= 72352 (rel)

mu_Yy= 72382 (rel)

J= 0 hl&jm 2

e Distribution along a line. This is useful to show a spatial distribution of
some interesting variables, such as induction, voltage, Electric field or
Magnetic field intensity. The following figure shows the distribution of B
along the airgap for the above synchronous machine

0.5
04 B.n, Tesla
0.3
0.2

0.1

-0.1
-0.2
-0.3

-04

'05 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900

Length, mm

These data can usually be exported to other programs, such as Excel in a
tabular form.
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Energy Stored in the Magnetic Field

The energy stored into the magnetic field is a quantity of primary importance for
a good understanding of what follows. The simplest way to evaluate the
magnetic energy stored into a given material consists of the measurement of
the energy flow between an electrical source and the material itself: this is
because we are very good at evaluating electric energy.

Let us consider a torus of magnetic material on which there is a winding of N
turns is wound. The geometry of the torus is such that the difference between
the external radius rg and the internal radius r;j is negligible (rg ,rj =1). In the

following, the significant dimensions of the torus will be the mean radius r, and
the area of the cross section S.

An experimental device for the evaluation of the energy stored in a magnetic
material.

The magnetisation characteristic of the material will be considered to be
completely general. At any point on the magnetisation curve it is possible to

define a permeability x such that:
B=u(B)H

In linear materials the permeability « is constant, no matter the value of B or H,
in non linear materials, the permeability is a rather complicated function of B
and H. Let the winding be fed by a dc voltage source v. If the breaker T is
closed, a current flows into the winding. By introducing an equivalent resistance
R that takes into account the Joule losses in the windings, the Ohm law for this
circuit reads:

_Ri do(t)
v(t)=Ri(t)+ N ot
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Since the flux of the magnetic flux density B is constant across each cross
section:

i dB(t)
v(t) = Ri(t)+ NS ot

Myltiplying by i dt both Ihs and rhs:
vidt = Ri*dt + NSidB

and by applying the Ampére law to the mean circumference of the torus:
vidt = Ri*dt + Sr_HdB

The lhs in the above equation represents the energy supplied by the voltage
generator in a time interval dt. In the rhs of the same equation, the first term
represents the energy losses (in a time interval dft) in the equivalent resistance,
and the second term is the variation of the energy stored in the magnetic field
between time instants t and t + df. The term S ryy, is the volume V of the torus.

By integrating between the time instants t =0 and t = +o0:
~+00 +00 B
jwm—jRszij@mb
0 0 0

In the Ihs there is the difference between the energy supplied by the voltage
generator and the energy dissipated by the Joule effect in the equivalent
resistance. Their difference, i.e. the rhs, is the remaining energy present in the
system under consideration: the energy stored into the magnetic material. If the

status of a non-linear material is such that it works in a point (H", B") the
specific energy is the area between the curve and the B-axis from B=0to B =

B”. For linear materials, the integral in the rhs of the above equation becomes:

8" _BH _uH’

2 2 2

THmmbz

This quantity has the physical dimensions of a energy per unit volume [J/m3]
and is commonly called specific magnetic energy. Once the vector potential in
the interpolatory nodes has been found, the numerical evaluation of the
magnetic energy is rather simple. Proceeding element by element one has:

L BZdVeI: L I(VXA)ZdVeI

W, =
2/uel Qg 2/uel Qq

el

The integral can be expressed in terms of the numerical values of the
interpolatory nodes and in terms of the surface integrals of the shape functions:
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L 3 3
A |Va vV dQ,,
2/“lel EEAI j a a

eI

Another form for this equation is:

T [B2dv, = —jBHdV —IVxAHdV
2luel Qg Qg 29
V-(AxH):(VxA)-H—(VxH) A=(VxA)H-J-A

=;jJAdVe, jv (AxH)dv,
Q

eI

1
= Zd[IJAdVel +E§Ax HdS

If we let the surface over which we take the second integral go to infinity, then

Aoc 1 JH o= L ,S o r? the surface integral goes to zero and
r

r

w, == [ 9adv,,
2

Qel

Linked Flux

A magnetic field is said to be two-dimensional (2D) when there exists a
symmetry that makes possible to find a repetitiousness of the physical
phenomena plane by plane, from here to infinity. This is the situation when the
currents always have a direction parallel to a z-axis, and the transverse sections
to this axis always present the same geometry and the same materials, point by
point. This is equivalent to saying that B(x,y,z1)=B(x,y,z2), whatever z4 and z».

In this case, a significant simplification can be achieved. In fact, any partial
derivative respect to z vanishes, and it is found that the vector potential is
always parallel to z-axis, and therefore

A=iy Ay

In the following, for the sake of simplicity, A, will be referred to simply as A.

This will not generate any ambiguity, since, for the said property, in 2-D static
fields the vector potential is in fact a scalar potential; more precisely, it is a
vector which exhibits only one component.

By developing the vector product in B=VxA it is easily found for the
components of B:
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A A
= B =2
dy Yo dx
What about the physical meaning of the vector potential? (we will continue to
use this name). Let us consider a 2D field, in which there are two infinitely long
conductors parallel to z-axis, of negligible cross section, carrying a dc current +/
and -/, respectively. The magnetic field B is the same in any point having the
same x and y coordinates, no matter the z coordinate of the point: the same is
true for the vector potential, which is assumed to have the value A, in the right

conductor of the turn and the value Ay in the left conductor. The following figure
shows this physical situation, and the next figure shows the 2D geometry.

y

A turn carrying a dc current |, infinitely long in z-direction: only one unit in z-
direction is represented. Distance between conductors is d.

The x-y representation of the turn in Fig. 6.6.1.

Let us now consider the flux (per unit length in z-direction) of B across a surface
that has the turn as contour:

(/)3(B)=J'B'ndS
S
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where S is the surface of the turn for one unit in z-direction, and n is the
outward normal to S. By substituting the expression for B as a function of A:

s (B) = IVx A-ndS
S

Application of Stokes' theorem transforms the above equation into the following:

ps(B)= [A-d(+09)
+B

where the line integral in the rhs is defined along the turn. On the basis of the
assumptions previously made, the flux of B can be rewritten as:

C E
@5 (B) = [Adz+ [Ad(+c8)+ [ Adz
B +5 D

The first and third integral have, respectively, the following values: A and -Aj

(the vector potential has the same value when the x- and y-coordinate of the
point do not change and the z-coordinate of the point changes). On the other
hand, the calculation was performed with a reference of one unit in z-direction,
and moreover it should be noted that the integration path moves in opposite
directions along the conductors.

The second integral is obviously negligible with respect to first and third since
the wires are infinitely long: we studied just one unit of their length in z-direction,
but the extension of their active length is infinitely greater than the length of the
connections. We arrive at the following formula:

0s(B)=A —A

that presents a very interesting property of the vector potential: in 2D
magnetostatic problems, the difference between vector potential in two
points (x1,y1) and (x2,y2) represents the flux of B through a surface

having unitary length in z-direction and having the traces of the sides
parallel to the z-axis at the points (x1, y1) and (x2,y2).

This physical aspect of the vector potential in 2D magnetostatic problems is
very interesting for the analysis of magnetic fields, since in these problems the
flux of B is in general of greater interest than B itself. The property in the above
equation reveals also that we are not in general interested in the value of the
vector potential: rather, we are interested in the differences between vector
potential in two points. Moreover, lines where A is constant are also flux lines:
since the flux of B is related only to the difference between vector potentials, no
matter the points where the difference is calculated, if this difference is
calculated along two flux lines.
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We already deduced a useful relationship between the magnetic potential and
the flux of B. Now we want to give a definition for a very important quantity: the
flux linked with a coil.

Let us consider two turns lying in the same plane x, y where there is a known
distribution of vector potential A(x, y). We shown that the flux of B through the
surfaces of the turns (per unit length) is:

p(a,b) = A - A p(c.d)=Ag— Ay

If the turns are series-connected (for instance by connecting with a short-circuit
points b and c), the situation remains practically unchanged: in fact there is a
new surface (singly-borded, two-faces) were the flux of B can be evaluated:

p(a,d) = p(a,b) + p(c,d) = (A - A) +(Ag = Ag) = (A + Ag) — (Ao + Ay)

Two turns that can be series- or parallel-connected. This is an experimental test
simulation for the numerical evaluation of the flux linked with a coill.

y

le® 3 10 @ 2 LX

Z = const

2D x-y representation of the structure

The situation changes completely if the turns are parallel-connected, if points a ,
c and b, d are short-circuited. In this case it is in fact impossible to define a
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two-faced, singly-bordered surface. In other words, it is impossible to define the
flux of B through a surface, since this surface does not exist. But we are not
interested only in knowledge of the flux; we are also interested in some related
quantities, such as the back emf induced in a system of turns. For instance,
what is the numerical value of the voltage between points (a = ¢) and (b = d) ?
The answer can be found by considering the following figure, where each turn is
represented in a physical schematisation as a voltage generator in series with a
resistance.

e2 =S@12 =S(A—Ay) €34 =S@34 =S(Ag — Ay)

where s is the Laplace operator.

®12 C) ' C) ®34
(b:d)

The circuit equivalent of the structure.

Norton’s theorem can be applied to both sides of the circuit obtaining the circuit
in the following figure

(a=c)
®

e

i < ) R v R 6 ) e34
R R
®

(b=d)

Norton transformation of the circuit.
Voltage v is readily found to be:

vo[82, 8 RO} e tey
R R AZ2R 2

It should be noted that in the above equation resistances are not explicitly
present: the only constraint on them is in the fact that they are equal. In
presence of N turns parallel connected:
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N

ifa 1,
N k=1 N k=1

Formally, this equation is the expression of the Faraday’s law, since a voltage
appears as the derivative of a quantity that has the dimensions of a magnetic
flux. It is reasonable to define this quantity as a flux: the flux linked with the coil

7

Let us now consider a massive turn, made up by a conductor of finite
dimensions in x- and y-directions. This turn can be seen as the parallel
connection of infinite sub-conductors, each one having the same resistance but
a different flux to B. The flux linked with the massive turn is:

18 AL
Yy = L'm_z(/’k = “m_Z(Am -A,)

—-o N =} Nowo N =

where suffixes [ and r denote the left and the right part of the turn respectively
(with reference to the above case of two elementary turns, / represents the part
of the winding where sub-turns have odd numbers, r the part where sub-turns
have even numbers). The following figure represents a 2D view of the turn.

y

B W .

Z = const

x-y representation of a massive turn: the current is z-directed.

By multiplying both numerator and denominator of above equation by S, the
cross-section of the turn:

. S1Y 1. J
v = '!ll_rﬂogﬁk:l(Akl - Akr)=§h|l'_f]lkz:;,(Ak| - A AS

where A4S = S/ N is the surface of the cross-section of the elementary turn. The
limit of the sum in this equation is just the definition of integral. Therefore we
have for the linked flux:
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y/=é[£AdS‘ }

where the integrals have to be evaluated on the left and on the right part of the
cross-section of the turn.

—J'AdS
S

Numerical evaluation of the integrals is rather simple; since regular integrals are
summable functions, it is possible to proceed element-by-element. Say Ngj is

the number of triangular elements that cover without holes and/or super
positions the region S where the integrals have to be evaluated. One has:

Nel NeI
[Ads=> [AdQ =>"> A [e, d,
S i=1 0, i

.
i

N

o]

where Aji and ¢ji denote the k-th node potential and shape function in i-th
triangular element.

Inductance

The definition itself of inductance is directly linked with the definitions of
magnetic energy and of linked flux. In general, the inductance of a winding is
given by the ratio between the flux linked with the winding and the current into
the winding:

L=Y
|

If the system under consideration is linear, it is easily seen that equation is
equivalent to:
LoV _ NBS NiBS HIBS _2HBl_2W

In the above pages, the numerical evaluation of the linked flux and of the
energy stored in the magnetic field have already been discussed; the numerical
evaluation of the inductance is therefore immediate when the linked flux or the
energy are known as:

- the ratio between the linked flux and the current;
- the ratio between twice the magnetic energy and the current squared.

For non-linear problems, the situation is completely different. Evaluation of
inductance from the above equations leads in general to completely different

results, those coming from L:_—V/ having greater values than those from
i
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L :ﬂ. Let us suppose that the toroidal device shown earlier is made by a
i

non-linear material, and that the current in the winding is such that the flux
density in each point of the material is 7.4 T. If no leakage flux is present, there
is proportionally between the flux linked with the coil and the flux density, as
well as between the current and the magnetic field:

w= NBS HI = Ni

therefore, if the definition L :Z is adopted, the inductance is proportional to the

product (B H), while, following definition L = &2 the inductance is proportional
[

to the integral of the magnetic field. This situation is shown in the following
figure: in a) the quantity B H / 2 is shown; in b) is graphed the integral of H vs.
B.

flux density B

flux density B

0
0 100 200 300 400 500 600 700

magnetic field H magnetic field H

a) b)
The definition of inductance for a non-linear material: a) from linked flux, b) from
energy stored in magnetic field.
From this figure it is evident that:

B
IHwaSEﬂ
0 2

the equality being valid only for linear materials. By introducing inequality we
can obtain:
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B
2
:2_\2/J‘H(b)db£2_VBH_ 28) BH _N°SB_y
i |
0

2N
i° iZ 2 (HpZ/N? 2 HI

It has been shown that the inductance calculation from stored energy leads to
numerical values smaller than that from linked flux, but the question is the
following: what definition of inductance should | use in non-linear problems?
The answer is simple: it depends on what | am looking for, and on how | defined
the inductance itself.

Let us consider again the device. The winding is now fed by means of a time-
varying voltage current. If we define the inductance as the ratio between the
linked flux and the current, we have:

. d . .. . dit) ., db
V(D) = Ri() +— (L, ) = Ri®) + L, () Id(t)+l(t) d;”

since now the inductance (note: the ratio between linked flux and current) is not
more constant, but it varies with the current. Integration of the above equation is
not very simple, since there is a term that implies the knowledge of the variation
of the inductance (always the ratio between linked flux and current) with time. A
simplification of this equation can be achieved by rewriting it as:

di(t) .

V(D) = Ri(t) + L, () == +i() dL,,,_(i) di(t)

di dt

It will be seen in the following that this equation is the key to solving transient
problems involving non-linear material. It should be evident by now that the
calculation of (dL(i) / di) is not so difficult (at least in principle), since it will
suffice to determine the behaviour of the inductance (again, the ratio between
the linked flux and the current) vs. the current, and to derive it with respect to
the current itself.

Let us suppose that the current has the value i". Is the energy stored in the
magnetic field equal to Ll/, i2/27 Certainly not. If we want to determine the
specific energy by means of the inductance, we have to calculate the quantity
Ly (that, obviously, depends on the current) and successively we have to
evaluate Ly i"2 / 2. So, also for non-linear problems, both definitions of the

inductance hold: the only difference with linear problems is in that they do not
coincide. Therefore, each definition of inductance can be used, depending on
which kind of result we want to obtain.

Self and Mutual Inductance

In this paragraph the attention will be focused on linear problems. Numerical
evaluation of inductance from the flux linkage as defined above is rather simple.
Simply to solve the FEM problem, to determine the linked flux and to divide it by
the current: the inductance has been found, or, alternatively, to evaluate the
total magnetic energy and to divide it by one half of the current squared.
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Particular attention should be paid to the fact that, if we utilise symmetry
properties, we determine linked fluxes and energies that are smaller than the
complete geometry case.

To determine the mutual inductance between two windings, there are again two
possibilities:

- from magnetic energy;
- from linked flux.

In the first case, two FEM analyses are needed. In the first one, the current in
both inductances are the same; in the second one, the current in one of the
inductances has to be reversed. The magnetic energy in the first FEM analysis
is:

Wiy = % Lyi? +% Lyi2 + Myi?

In the second FEM analysis the magnetic energy is:
sz :% L1i2 +% |_2i2 - M12i2

From the difference between W1 and W2, the numerical value of the mutual

inductance from magnetic energy is easily evaluated. The evaluation of the
same parameter from the linked flux is even simpler: suffice to feed winding 1
with a given current, to perform FEM analysis, to evaluate the flux linked with
winding 2, and to divide this quantity by the current in winding 7.

Self and Mutual Inductance in Complex Winding Systems

The problem of the numerical evaluation of the inductance, however, is not so
simple as at a first sight. It may be said that the last steps to evaluate this
quantity are simple if the approach to the problem was approached correctly
since the first steps of the FEM analysis.

As an example of this statement, let us consider the core inductor in the
following figure, that is made up by three sub-windings. In a) the connections of
the three windings are shown: windings 2 and 3 are connected in parallel, and
their complex is connected in series with winding 1; in b) the cross-section of
this core is shown. From the external network, this arrangement of windings is
seen as a single winding, no matter the internal connections. The question is
the following: what is the numerical value of the inductance from terminals A
and B? (to be honest, this arrangement is very strange, and it would be rather
difficult to find this inductor in practice).
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o — |
D e
ol
AT 2 2
[ - 1 1 1
Be—e¢ /
: ‘* T - 3 3
! b 3 iron
O |/

L 1//
copper

a) b)

A three-windings core. a) the internal connections: dotted lines represent
internal connections, and slim lines represent external connections; b) the cross
section of the core (primed numbers denote the return conductors: currents in
regions 1 and 1' are the same with opposite directions).

For this kind of analysis, resistive phenomena are neglected as well as eddy
current effects. To evaluate the external inductance, the complex of the three
windings may be feed with a unit current; once a field solution is known, both
linked flux and energy can be calculated, and from these quantities the
inductance.

One of the most common errors consists in feeding the three windings with the
same current. Apart the differences between the current densities, this is a
major error, because the total current in the three windings is different. Often,
the currents in windings of the type 1 and 2 are supposed to be equal:
therefore, in this case, another error could be to set /2 = 0.5and I3 = 0.5.

From the circuit schematisation in the above figure it is evident that, if in A there
is a unit current, winding 7 carries the same unit current. But what about
windings 2 and 3? The sum of the currents in the said windings is surely one,
but there is no information that allows to evaluate a-priori the numerical values
of currents /2 and /3. The fact is that no circuit information is included in FEM

schematisation. Therefore we need to make this schematisation separately. For
our case, the equivalent circuit is shown in the following figure

2 L

3ﬂﬂ§ﬂf' M1z

L
B " 1 A
- n | T
—
T 1
[ ]
. M
I L3 13

The equivalent circuit of the inductor.
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We are looking for the inductance seen from the external circuit, i.e. from points
A - B. Since we do not know the values of /2 and /3, or equivalently their ratio,

the only solution is to evaluate separately the six inductive parameters, that can
be done in three FEM analyses. In each one of these, only one winding is fed,
the remaining two windings carrying a zero current. At the end of each FEM
analysis, the self inductance of the fed winding is known, as well as the mutual
inductances between this winding and the two non-fed windings. In this way,
three self inductances can be determined, and six mutual inductances. Suppose
that we fed winding /, and that we found the numerical value of M,'j. In principle,

when feeding winding j we should not determine the value of Mjj, saving thus
the computer time to determine this inductance value.

Obviously, M,'j = Mj,', but numerical elaborations are affected by rounding and

truncation errors. This means that, with a practically zero computational effort,
we can compare the numerical values of M,'j and Mj, This is a good estimation

of the accuracy of the calculations. For practical purposes, two mutual
inductances can be considered equal if their difference is less than 0.1 %, the
basis being the smaller. Once this task has been accomplished, the external
inductance can be found by means of a simple circuit analysis.

Back emf

Between the machine parameters, back emf is in general the first step for the
determination of the overall performances of a design, and in the following it will
be shown how it is possible to deduce accurately back emf at the machine
terminals starting from FEM analysis.

The logical sequence of this technique starts from the knowledge of the vector
potential: back emf is computed by means of a small number of integral data
closely related to the flux through a surface. It will be evident that numerical
derivation of such integral data is necessary throughout the work, and therefore
a great accuracy is required in FEM computations. This means not only to refine
successive FEM solutions, but also to control the evolution of such numerical
parameters from one FEM analysis to another. This is not only in a single FEM
analysis, but also comparatively from one solution to another, if several FEM
solutions are required for various geometrical configurations of the same design
(with reference to a rotating machine, for different stator-rotor relative positions).

Let now us consider a 2D section of a rotating machine. The following
hypotheses are adopted:

- electromagnetic fields can be considered 2D;

- magnetic materials are linear, and hysteresis is not present in ferromagnetic
materials (iron and PMs);

- losses in active materials are not taken into account;

- the rotor speed wy is constant.
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A FEM solution in terms of vector potential is considered below. By definition,
the flux linked with a surface that has in the (x, y) plane its traces in the points 1
and 2, is ¢ = A1 - Ao. The flux linked with a coil (y)is:

1
V=g j A(X, y)dS

where S is the area of the transverse section of the coil and A(x,y) is the vector
potential (here and in the following the number of conductors in series per slot
will be taken as one; the same holds for the number of pole pairs).

This is the value of the flux linked with a test coil at time tp; values for different

times can be obtained with new relative positions between stator and rotor.
However, the flux linked with the test coil at time ¢4 is the same flux linked at fp

with the coil which is at an angle (t1 - tg) o, from the current coil, where @ is the

rotating speed of the rotor. This allows to limit the number of FEM calculations
to one, if the magnetic structure is isotropic. When the geometry under
consideration presents a small number of coils per pole and per phase, the
relevant magnetic structures present characteristics not constant in space.
Therefore, the number of FEM calculations to perform is at least two: the first
one when the axis of the magnets are superimposed to the axis of a slot, the
second one when the axis of the magnets are superimposed to the axis of a
tooth.

When the flux linked with a coil (or with a phase) is known, the computation of
the relevant back emf is in principle a simple task, by applying the Faraday law:

_dop(t) __de(0)d0 __dg(0)

e(t) =
®) dt do dt de '

where 6 is the angular position, in a reference frame rigidly connected to the
rotating field, of the axis of the coil, and @y is the angular velocity of the rotating

field. From the above equation it is evident that numerical derivation of the
linked flux is the basis for the determination of the back emf.

One possibility is to calculate the back emf in a turn by means of direct
numerical derivation of the flux. Accuracy reachable in this way is poor, since
the linked flux is known in a small number of points of the interval; no matter
what kind of numerical derivation algorithm, derivatives of degree greater than
one are not taken into account. If the linked flux varies suddenly near the point
under consideration, the numerical values of higher derivatives are not
negligible, and this results in great numerical errors.

Linked flux can be approximated by means of analytical functions, such as:
Fourier expansions, Lagrange polynomials, Tchebishev polynomials, cubic
polynomial splines. If an analytical approximation for the linked flux is
determined, the back emf can be found by means of analytical derivation, that
can be obtained without numerical errors and with no significant computational
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efforts. This is a general interpolation problem, where a number N of pairs of
(6, ) values are known in a closed interval of the G-axis. However, adequate
choice of the interval along @-axis allows the a-priori knowledge of more
constraints on the derivative of the linked flux: for instance, the back emf in the
interpole axis (the back emf is maximum) or in the pole axis (the back emf is
Zero).

A Fourier approach to the interpolation does not seen to be useful, since the
precision in the numerical evaluation of the Fourier coefficients decreases as
the order of the harmonic increases. In principle this is not a great problem,
since the numerical value of the said parameter decreases when the order of
the harmonics increases, and the error in the numerical value of the flux is often
not appreciable. On the other hand, back emf is calculated by means of
analytical derivation as in the following Eq:

e(d) = _dgg(:) = —ik o, sin(k 6)

It can be seen from the above equation that the higher the order of the
harmonic, the greater the weight. Numerical tests show that N should be kept
small: addition of two o three harmonics to a qualitatively good e(6) curve often
results in wild jumps of the new curve that, at least in principle, should be more
precise.

Resistance. Joule losses power.

In a fixed instant the current density vector J is known in any point of the volume
of the analyzed system. The instantaneous Joule losses are

b, =[]

With alternative currents, varying sinusoidally with the time, the average Joule
losses are:

0, =[[fpol v
\

The equivalent electrical resistance can be computed as:
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Capacitance and Resistance.

By application of the basic concepts for the electrostatic field and conduction
media, we can determine the capacitance and resistance for the complex
geometric configurations:

§5-E-ds
C:SjE-ou

L
IE-dI

_ L
jﬁa-E-ds

S

Note the symmetry in the two formulations. For linear materials we can use the
electrostatic energy approach to calculate the capacity of a conductor:

C= 2'8 :
v
1 1 )
Uz—ID-E-dVoI:—J.g-E -dVol
2VoI 2VoI

U is the electrostatic energy and V the potential difference.

Eddy current losses
The eddy current density is:
J = jowA

If A corresponds to the peak value of the vector potential, then the loss in a
element will be

1
p, = REALLZGLJ 3 *dxdyj

Since A varies linearly over the element, then by the above equation so does J:

J :ZIA{(ai +bx+cy), +(aj +bjx+cjy)Jj +(a, +bkx+cky)Jk}

Substituting and integrating over an element, we obtain:

A

P=—
120

{QJiz +3,f +Jki2)+ REAL(JiJ;+JiJ;+JkJ})}
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Force and Torque

Lorenz’s Force law is straightforward and simple to apply to obtain the force
applied to a conductor. Given the local value of flux density, B and current
density we find the local force vector as

dF =f=JxB

This equation is useful for finding the force on conductors. For example
considers a DC motor showed in the following figures.

SLDE WIEW TOP YT
Rotation
A 4 B FED
. . B [
bl e A . B
J \; Axis of
c — oD - Fy. rotation
—
v
Fx=-28 [N/m]
Fy=0.37 [N/m]
X
Fx=28 [N/m]
Fy=0.4 [N/m]
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By application of Lorenz Force expression we obtain the force acts over the
conductor. The torque is given by:

M=2-F -r

Maxwell Stresses

Substituting the Maxwell’s equations in the Lorenz force expression:

VxH:J:EVxB:VVxB:J
Y7,

we obtain:
f =(WxB)xB

Developing this equation, we obtain the following equation (we only show the
equation for X — component):

B oB B
f,=v BZaX—BZaBZ—By y+Byax
0z OX OX oy

If a term B, aaBX is added and subtracted from the above equation, and the
X

identity

o oB,
&(BZ)ZZBX

is used, then the force component becomes:

f, =V(1a(52)+ g, B g B 10, B + Bf)j

20x " 0z Yoy  20x

Some further manipulations gives:

o(B,B
fx=v(8[33—232j+8("3’x81)+ (B8 _g vs]:»(v-s:o)

OX 0z oy "
o(B,B
f=v 5(55_152}5(3@% (8.5,)
OX 2 oz oy

The remaining expression may be recognized as the divergence of a vector fy,
whose components are:
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aTx = fXX :V(BX2 _1sz
2

OX
V.T, = aaTyX = fXy =v(B,B,)
oT

*=f =v(B,B
62 Xz ( X y)

A similar development holds for each of the other force components (f, and f;).
Thus these vectors can be combined into a Tensor T:

(sz_;sz (BxBy) (Bsz)

T=v| (B,B,) (Bj—zszj (B,B,)

®e)  @©8) [8i-18

The force density can now be written as the divergence of this tensor:
f=V.T

The total force can be found by integration over the volume:

F=ijde=jijv.Tdv

Using the divergence theorem, this volume integral may be reduced to a
surface integral:

F= jvjjv TdV = £§Tds

We limit the following development to two dimensional geometry, so that the
surface of integration is a line (we consider a unit depth). The unit normal and
tangential vectors to the surface are:

a, =s,d, +5,d,
a, =s,d, —s,d,

The incremental integration path is then: ds=4&,dl where dl is a differential
length along the integration path. The incremental force is now:

© R. Bargall6. ELECTRICAL ENGINEERING DEPARTAMENT. EUETIB-UPC 24 of 29




EINITE ELEMENTS FOR ELECTRICAL ENGINEERING COMPUTATION OF OTHER QUANTITIES

f=T-ds

1 .2
B —|B| j (B.B,) _
_ ( 2 )[ Sdel

f=v 1 ‘
2
(B,B,) (55 —E\B\ "

The tangential and normal component are:

f.=f.a =v-di((B,B,)(s? —s2)+s,s, (B - B?))

X

XYy TXTy

fo=toa,=v-dBis] B - B 28,855,

The tangential and normal components of the flux density are:

B, =B,s, +B,s,
B, =-B,s, +B,s,

Substituting and some after algebraic manipulations, we can write:
f. =v(B,B, )l

f= ;v(an ~ B2l
The torque on an arc of radius r is given by:

M =v[B,Br-di

Virtual Work method

The principle of the virtual work technique to estimate the force is used in
conservative energy systems. It is based on the comparison of the energy
balance between two different positions, supposing a virtual movement along
the direction where the force is computed.

In electromagnetic problems, the force is expressed as the partial derivative of
magnetic coenergy with respect to the coordinates, along which the force
component must be computed:

E OW' W'(x) —W'(x + Ax)
X AX

We can also use the energy:
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= _ W W(X) -W(Xx+Ax)
§ OX AX

Some commentaries:
- If the variation Ax is small, the numerical solution is not appreciable.
- Ifitis too big an excessive change of the magnetic energy is achieved

- The result may be affected by the variation of the mesh in the two positions.
- This technique requires at least two field solutions.

Core Losses

In general, the magnetic iron losses can be calculated by the composition of
three losses:

e Hysteresis losses.
e Eddy current losses.
e Excess losses also called anomalous losses

Below we treat each of these three losses separately.

Hysteresis Losses

Hysteresis losses are owing to the discontinuous character at the microscopic
scale of the magnetization process, that is, are due to the energy lost by each
Barkhausen jump.

The classic procedure to determine hysteresis losses is the Steinmetz equation:
B, =nVfB,

One better choice is to apply the fact that the volumetric density of the energy
lost owing to the Barkhausen jumps is the area of the quasistatic hysteresis
cycle, and hence the energy lost is the area of the quasistatic cycle A,
multiplied by the volume of the sample V. Then hysteresis losses can be
calculated with the following expression:

P = fVA

where fis the frequency of the external applied field.
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Eddy current or classical Losses

We saw in earlier sections that in a conducting material submitted to time-
varying field, loops of induced currents (Eddy currents) are created. In a slab
with thickness d and electric conductivity o, under a periodic field with period T,
these losses can be determined by:

-G 5

For non-sinusoidal fluxes these losses can be calculated by using a Fourier
expansion of the induction and summing the effects of all of the harmonics:

o7zfd2

5 "B

where B, is the amplitude of the n™ harmonic.

EXCESS LOSSES

The excess losses are due to the existence of magnetic domains, which
enhance eddy currents in the proximities of domain walls. The classical model
based on Maxwell’s equations used in the classical losses deduction does not
consider the presence of domains and supposes a magnetization process
perfectly homogeneous on space, that is, neglecting the magnetic skin effect.
But owing to the effect of domains, in reality dynamic losses are greater than
classical losses; this difference of losses is called excess losses.

Pux (t) = Py (t) -FRy (t)

The Bertotti [7] theory establishes that the behaviour of domains on a large
scale can be described by the dynamics of magnetic objects. These magnetic
objects are groups of domain walls correlated. In materials with large domains,
as in the case of oriented grain, one magnetic object corresponds to one
domain wall. The change of magnetizations is recorded, on a given moment, by
means of the simultaneous intervention of n magnetic objects. The
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magnetization process is represented as a distribution of coercive fields locally
associated with magnetic objects. There is a dynamic balance among the field
necessary to maintain a certain variation of B and the counter fields due to eddy
currents. Time variation of B implies a variation in the balance and hence a
modification of eddy currents.

If we define excess field Hex(f) as the part of the external field applied to
compensate the field created by the movement of the magnetic objects, excess
losses can be calculated by means of the following expression [7]:

dB ()"
B,
dt

P, =,oGV, le
0

where G is the friction coefficient, which represents the constant of
proportionality between the excess field and the rate of change of flux:

d
H., =Ga—¢(t)
dt

The parameter V, is related to the number of magnetic objects and the excess
field. Experimentally it has been determined that the relationship between them
is linear [8]:

Practical implementation of core loss calculation

In general, the suppliers of magnetic materials supply two characteristics of its
materials:

e Saturation characteristic: B= f(H)
e Total losses Pre = f(Bmax, f). Usually this relationship is approximated by
the following equation:

p.=K_-f7.BY p>1y~16...22

To calculate the magnetic losses we can proceed as shown:

e First, we determine the potential vector and the induction at any point of
the modelled domain.
e Thus we can determine the average value of induction in each element:

B, +B;+B,

aveelement — 3

B

In the above expression we consider that the elements are small. If the
elements are big, the better approximation is to consider the average value as
the induction at the centroid of the element.
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e Using these values we determine the magnetic losses in each element:

P. f(B

Eelement — aveelement ? f)

e Finally by summation of these values we obtain the total magnetic
losses.

Pee = Z PFEeIement

The above process is valid only in the case of sinusoidal field distribution. For
other cases (usually encountered in the practical applications) these values will
be adapted. An effective solution to this problem still hasn’t been found.
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GENERALARCHITECTURE OF CAD
SYSTEM BASED ON THE FINITE
ELEMENT METHOD

In practice the analysis of any device involves three steps:

e The description of the geometry, the physical characteristics and the
mesh

e The application of the FEM

e The visualization and interpretation of the results of the simulation

These three steps are different and correspond to the three different modules:

e The data entry module: Pre-processor.

hem

= |—3— : AVAVAVAVARREL .
1. Build CAD Model 2. Mesh 3. Apply Loads and

. Boundary Conditions

e The module to perform the analysis: Solver.

4. Computational Analysis
e The module to analyse the results: Postprocessor.

5. Visualization
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The data entry module

The date entry module is used for entering all the information necessary for the
analysis of the problem. This module accomplishes the following three
functions:

e Description of the geometry of the object
e Mesh generation
e Definition of the regions and the boundaries

The mesh generation consists of finding a collection of nodes and a collection of
finite elements which form an acceptable discretization of the domain. Such a
discretization must respect the boundaries of the domain and the interfaces
between different regions. Also, the shape of the FE mustn’t be too irregular.
The following figures show an incorrect and improved mesh for a particular
problem.

L
L ]

&
L
&

Intervals based on
global, feature and
curvature size Poor elernents

[ ]

L ]

]

'Y S
Ad—? e s
[ X )] 4
@ ® P

Take into account

- local distances to
o ; ]

nearby geometric

entities

& &
-

The following figures show the solution of the magnetic field in a direct current
machine with the use of two meshes. The first is coarse and the results are
poor. The second is a refined mesh; the solution is fine.
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E.:_-"l__]l

The following figures show a case of an synchronous machine and the detail of
mesh in the air gap area. To obtain a high resolution we need to mesh the air
gap with a very fine mesh.
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The following figures show the generation of three-dimensional mesh.

The nodes are defined by their coordinates while the elements are
characterized by their type and a list of their nodes. In some cases we include
the information about the characteristics of materials and sources in this file.
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The solver

The solver computes the unknowns in the FE problem, i.e it solves the linear (or
non-linear) systems of equations. Its input is the domain discretization, in some
cases the physical characteristics of the materials, the sources and the
boundary conditions. Additional information such as type of problem, interval of
time calculation and maximum error is in some cases compulsory.

Before the solution of algebraic equations, we must :

e Create the submatrix and subvectors corresponding to each element.

e Assemble these elementary matrices and vectors to build the system
matrix.

e Apply Boundary conditions and symmetries if these exist.

The solution of linear algebraic systems can be done in several ways:

e Direct methods: Gauss, Choleski
e Semi direct methods: ICCG
e Block iterative methods: Gauss-Seidel

When the system of equations is not linear, these operations are repeated in an

iterative scheme: Gauss-Seidel, Newton-Raphson,etc.

The postprocessor

The postprocessor perform two tasks:

e Extraction of significant information.
e Synthetic presentation of the numerical data via graphic facilities.

In most cases the pre-processor and the postprocessor have the same
interface. The difference is in the information available at each time. For the
post processes we need to know the value of potential at every node and the
physical characteristics of every element. In the pre-processor it is only
necessary to know the coordinate points.
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Examples(2D): FEMM, MAXWELL_SV.

We present here some characteristics of two programs: FEMM, MAXWELL_SV.

FEMM MAXWELL SV

Electrostatic Yes Yes
DC conduction No Yes
AC conduction Yes Yes
Magnetostatic Yes Yes
Transient No No
Transient + Voltage source No No
Thermal No No
Movement No No

Number of nodes No limited No limited
Non-linearity Yes Yes
Equiline map Yes Yes
Colour maps Yes Yes
Vector maps Yes Yes
Numerical results. Point values Yes Yes
Graphical representation of Yes Yes

derived guantities
Mesh Automatic Automatic
Yes. Some integrals Yes. True

Complementary calculation

of line and area

“calculator” with a
hundred of options.

Operating system

Windows

Windows

The following figures show the appearance of some of these programs.

A femm - [ranex. FEM]

g File Edit View Problem Grid Operation Properties Mesh  Analysis  Window Help -

[= z]n|o]e| m o] #/=|0]a|e[t| 4]

g X

i@« | =W |3k

s

Ra

{x=10.3700,y=4.4500)

The pre-processor of FEMM
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[ femm - [ranex.ans]

E File Edit Zoom View Operation Plob %-¥ Integrate Window Help

[ Zim] i <] [ F1 8] [NIM[N] +|=[01[0)]e[t]$]9]

=3.180e-001

2.5984e-001 : 3.150e-001
2.818e-001 : 2.584e-001
2.652e-001 : 2.515e-001
2.486e-001 : 2.652e-001
2.321e-001 : 2.486e-001
2.155e-001 : 2.321e-001
1.989e-001 : 2.155e-001
1.823e-001 : 1.985%e-001
1.658e-001 : 1.523e-001
1.452e-001 : 1.655e-001
1.326e-001 : 1.492e-001
1.160e-001 : 1.326e-001
9.946e-002 : 1.160e-001
§.288e-002 : 9.546e-002
6.631e-002 : 8.265e-002
4.973e-002 : 6.631e-002
3.315e-002 : 4.973e-002
1.658e-002 : 3.315e-002
<1.655e-002

Density Plat: [J], MAmM2

(x=10.1600,y=4.7500)

The post processor of FEMM

Circuit M ame
I, -
Results

Total current = 1 Amps

Waltage Drop = 0.00335313 + | 0.0124531 Valts

Flus Linkage = 3.96426e-00E - j 5.0701 7e-017 Weberz
Flus/Current = 3.96426e-006 - | 5.07017e-017 Henries
Woltage/Current = 0.003393515 + | 0.01 24541 Ohmsz
Real Power = 0.00169959 '/ atts

Reactive Power = 0.00EZZ704 War

Apparent Power = 0.00E45482 WA

The post processor of FEMM. Complementary calculations.

& Sin titulo

0.4 o
|ds+lel, Maim 2
Reldswle], WaSm"2

0.3 - Im[Js+le], Masfm"2

0.2+

0.1 o

04— i
-0.1 . ; : . B :
u] 1 2 3 4 5 B
Length, mm

The post processor of FEMM. Graphical representation of derived quantities
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Executive Coumands
| Solutions !| Convergence | Profile |

Drawing: ¥¥ Plane ) T = - et
Define Model + | J
Setup Materials... ‘ J
Setup Boundaries/Sources... | J
setup Executive Parameters !| J
Setup Solution Options... | J
Solve ‘ J

Post Process... | < b4

Zoom In Zoom Ot Fit Drawing Fill Solids

Solution Monitoring

Help

|4

Exit |

Current magnification is 2.7.

The pre-processor of MAXWELL.

MAXWELL has an extensive management program. The above figure shows
the management window. In it we can see different options to create a project:

e Define model. To draw the problem model

e Setup materials. To assign materials to every area.

e Setup boundary and sources. To assign both: boundary conditions and
sources of excitation (voltage and current)

e Setup executive parameters. To describe what quantities must be
calculated automatically (usually force, torque, inductance and others)

e Setup solution options. To select the options of calculation:
manual/automatic mesh, etc.

e Solve. To solve the system

e Post process. To enter the post-process program.

© R. Bargall6. ELECTRICAL ENGINEERING DEPARTAMENT. EUETIB-UPC 80f 10




EINITE ELEMENTS FOR ELECTRICAL ENGINEERING GENERAL ARCHITECTURE

2D Modeler “microstrip” [read-only] |'._H'E|E|
File Edit Reshaps Boolsan Chject  Constraint Model  Window  Help

microstrip [read-only]

Lu

< )

el

Maxwell 20 Werzion 2.0.5735V Copyright 1984-2004 Ansoft Corporation

U|16.047627 V‘4.5376049 Enter UNITS: mils SNAPTO: grid wertex

The drawing menu in MAXWELL.
Solve Setup f'5__<|

Starting Mesh: Current ¥ ‘ Manual Mesh... ‘

Jolwer Residual: le-005

30lver Choice: * huto (" Direct { ICCG

S0lwe for: v Fields |v Parameters

v Adaptive Analysis
Percent refinement per pass:

B
Stopping Criterion
Mumber of recuested passes: 1

1

Percent error:

Suggested Values

LCancel ‘ Help ‘

The Setup options in MAXWELL
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2D Post Processor

it View Coordinates Geometry Data Plot Optlnr\s Window  Help

[nils] microstrip EEX
v % [-30.727567672729 phi[¥] I
¥ 1 [-25.119411468506

L — 1.0000e+000
§.00002-001

Red [42.333400123355 &.00002-001
ang [223. 60767523248 4. 0000001
= 2.0000e-001

Snap To: V¥ Vertex 1.4901e-008

¥ 6ria [ other...

3cl 8 1.28366852000473E-010
Secl : Integrate (ObjectFaces(-all-), Dot (<Ex, Ev,0>, <Dx, Dy, 0=)
<5 | &
Push | Pop R1Dn R1Up Exch ‘ Clear | Trndao |
Name |
(* degrees (" radians
Input General Scalar Vector
ncy * ‘ + | Vecy ¥ ‘ Scal?
Geom ¥ ‘ - | 1% ‘ Matl...
Const. # ‘ * | Power ‘ Mag
Y VA [ I

Trig *# Cross |

Func # Neg
Read bhs dsdz 1‘ Drisry
Gmooth Curl Write... |
Export j|

Domain Tangent
Hormal

+ nit Wec #

Done Help

The “calculator” in the post process menu in MAXWELL
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These examples are solved by Quickfield software. You can find the
indicated files in the course CD-ROM.

Exercise N 1. Slot embedded conductor.

Models /lab1.zip and lab1_2.zip

Task
Draw a plot of current distribution within the conductor placed in the slot of electric motor.

Experiment
Current density is obtained by potential measuring along the part of conductor done by voltmeter. Phase
is determined by digital phasemeter.

Problem type
Plane-parallel time-harmonic linear magnetic problem.

Geometry
Problem area is to the right of symmetry axis (line ab), corresponding boundary conditions are set.
S0
. EEE——
&
a a
A
=]
-
Lo
|t =
I + —
12 2
f—3 1
l Y
b h
Given data

Relative permeability of steel u = 7100.

Relative permeability of air & copper p = 1.

Conductivity of copper ¢ = 57000000 S/m .

The steel is laminated, so its conductivity along the bar is ¢ = 0 S/m.
Frequency f = 50 Hz.

The total current per the bar is 600 A, or 300 A if there are two bars in the slot.

Boundary conditions
At the vertical axis of symmetry (line ab) H; = 0.
The field fades within ferromagnetics, thus at other boundaries the field is zero A = 0.

Vertical distribution of current density along the single copper bar (I = 0 at the upper boundary of upper
bar). Problem file labl.zip.
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Current

density (*10°Am°)

1 (mm)

Vertical distribution of current density along two copper bars (I = 0 at the upper boundary of upper bar).

Problem file labl_2.zip.

~ Gurrent density {'106Nm2]
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Exercise N 2. Force of interaction of two cylindrical coaxial coils.

See following models

Task
Find the force applied to the coils with current with and without the shield between them.

Experiment
Forces are measured by use of digital balance on which one of coils is installed (see the right picture
below). Test are performed with currents varying, and different conductors and ferromagnetics are placed
between coils.

Geometry
Due to symmetry of the formulation only upper half of the problem (above ab line) is defined, and at the
axis of symmetry (line ab) the boundary conditions are set.

2R AT
[
A
L]
L]
[ v
= ! =
= = a ) ~ "Ih
Qg _
! ! .
¥ : . .
- ol
T
] :
[ i ||
¥ 1,702 KG
160
- I Y
Given data

Current density in the coil j = 700000 A/m?.

Relative magnetic permeability of air, aluminum and copper coils p = 1.

Relative magnetic permeability of the steel shield p = 71000.

Electrical conductivity of steel o = 70000000 Sm/m.

Electrical conductivity of aluminum o = 37000000 Sm/m.

Coils are wound by insulated wire, so cross-section conductivity in coils ¢ = 0 Sm/m.

Boundary conditions
Along the horizontal symmetry axis (line ab) B, =0.
Equation B = rot A in cylindrical coordinate system leads to A = const at the axis ab. The field fades at the
infinity, so due to the condition of continuity of the potential A = 0 at the line ab.
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Time-harmonic electromagnetic field, f= 50 Hz.

Shield type Mean force of interaction, mN Model
No shield 0.65989 lab2.pbm
Steel 0.196 lab2 Fe.pbm
Aluminum 0.207 lab2 Al.pbm

DC magnetic field.

Shield type Mean force of interaction, mN Model
No shield 0.65989 lab2c.pbm
Steel 0.232 lab2c Fe.pbm

Exercise N 3. Proximity effect.

Models /lab3_Cu.zip and lab3_Fe.zip

Task
Find the current density distribution along the cross section of long parallel conductors. Two types of
conductors are analyzed: two copper rods and two steel tubes.

Experiment
Current density is defined by measuring the voltages on the conductor segments, the phase of current is
measured separately by the digital phasemeter.

Problem type
Linear plane-parallel problem of time-harmonic electromagnetic field.

Geometry
Due to problem symmetry only upper-right quarter aOb is defined, and at the axes of symmetry the
boundary conditions are set.

Copper rods

i 30 I*b
|
_ _Oi ] A
i
. 128 o
Steel tubes
1)
. R £
0 i i e 68% e a
250
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Given data
Relative magnetic permeability of copper and air p = 1.
Relative magnetic permeability of steel u = 100.
Total current J = 300 A. Frequency f= 50 Hz.
Electric conductivity of copper ¢ = 57000000 Sm/m.
Electric conductivity of steel c = 710000000 Sm/m.

Boundary conditions
At the horizontal axis of symmetry (line Oa) H; = 0. At the vertical axis of symmetry Ob B, = 0. Equation B
= rot A in the cylindrical coordinate system leads to A = const at the axis Ob. Field fades at the infinity so
at the other boundaries A = 0.

Current density distribution along the line Oa for copper rods. Model lab3 Cu.zip

Current Density [*10° &/m?)
T T T

L {mm)

Current density distribution along the steel tube perimeter (from the point e to point f
clockwise). Model lab3 Fe.zip

Current Density {*10% &/m?)
28—
216 [ .
214 ]
212}
210}
208 |
206
004 [ .
202 ]
200 F
108
1.96

0 20 40 G0 80 100 120 140
L {mm)
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Exercise N 4. Electromagnetic shielding.

See the following models.

Task
Find the level of magnetic field reduction inside the shield. Shields made of steel and copper of the same
geometry are analyzed.

Experiment
Uniformal external magnetic field is produced by the electric magnet. The shield with the measuring coil
inside is placed between its poles. EMF in the coil is measured: in case of DC current in the coil - by
ballistic galvanometer (in the moment of switching on), in case of AC current - by use of millivoltmeter.

Geometry
The shield consists of two halves. Possible positions of the slot in the shield is shown by dotted line. The
slot could be enlarged up to 2 mm by sheets of non-magnetic materials. Due to symmetry only right-upper
quarter aOb is analyzed, and at the axes of symmetry the boundary conditions are set.

_ Spherical shield _CyIindricaI shield
H b H . ,.[L
* b
—> i - [T
: 1
—_— ,:-)}i':c. a l'IO a o
; - = _ 1yl = L]
TTT
— — N
NG} A Y|
—_—
— of
Given data

Relative magnetic permeability of air and copper p = 1.
Relative magnetic permeability of steel p = 1000.
Magnetic field is uniformal, B=0.139 T.

Boundary conditions
Due to symmetry at the line Ob H; = 0. At the line Oa B,, =0. Equation B = rot A in the cylindrical
coordinate system leads to A = const (0.0695) at the axis Oa. Field fades at the infinity, so due to
continuity at the line Oa A = 0 also. The field is uniformal, and the right boundary has the same condition
as the left one Hy = 0.

Shielding coefficient - relation of magnetic flux densities outside and inside the shield.

© R. Bargall6. ELECTRICAL ENGINEERING DEPARTAMENT. EUETIB-UPC 6 of 46




EINITE ELEMENTS FOR ELECTRICAL ENGINEERING EXAMPLES

Time-harmonic electromagnetic field , f = 50 Hz.

Magnetic flux density inside the Shieldin
Shield type shield (in mT), while external coefficier?t Model
uniform field is 139 mT
Staol aphers 0.082 1691 lab4_Fe.pbm
Steel sphere +
with slot 359 3.87 lab4Fe+.pbm
S\fﬁﬁ:;ﬂ'gﬂfr 0.336 413.69 lab4c_Fe.pbm
St‘ﬁﬁ‘g;gfer 403 3.45 lab4c_Fe+.pbm
C‘jv‘?mruf?;re 97.97 142 lab4_Cu.pbm
Copper sphare 100 139 lab4_Cu+.pbm
Covf/’iﬁ’ﬁ&ftyglrc‘)‘tjer 69.16 2.00 lab4c_Cu.pbm
COPV?/ﬁL‘zg?der 70.99 1.96 lab4c_Cu+.pbm
DC magnetic field.
Magnetic flux density inside the Shieldin
Shield type shield (in mT), while external coefficier?t Model
uniform field is 139 mT
Steel sphere 1.52 91.45 lab4_f.pb
without slot ’ ’ @bz 1.pom
Steel sphere 412 7 labd f+.0b
with slot ’ 3.3 labd T+.pom
Stael cylinder 2.08 66.83 lab4c f.pbm
Ste\’;'trf"s'l'gfer 48.8 2.84 lab4c_f+.pbm

Exercise N 5. Magnetic field of the cylindrical coil.

See models lab5.zip and lab5 Fe.zip

Task
Make a plot of magnetic flux density at the axis of the coil with and without steel core.

Experiment
Magnetic flux density is measured in laboratory by microwebermeter.

Problem type
Linear axisymmetrical problem of magnetostatics.

Geometry
Due to problem symmetry only upper-right quarter aOb is defined, and at the axes of symmetry boundary
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conditions are set.

@ 20 o

40
é,f

127

-
]

2100

Given data
Current density in the coil j = 100000 A/m°.
Relative magnetic permeability of air and copper p = 1.
Relative magnetic permeability of steel of the core pu = 500.

Boundary conditions
At the vertical axis of symmetry (line Ob) H; = 0. At the horizontal axis of symmetry Oa B, = 0. From B =
rot A in the cylindrical coordinate system we have at the axis Oa A = const. Field fades at the infinity, so
at the line Oa A = 0 due to continuity of A.

Dependence of the magnetic flux density upon the distance to the coil center. No core. Model lab5.zip

Flux Density (*107° T)

0 B0 100 150 200 2h0 300 300 400
L {mm)

Dependence of the magnetic flux density upon the distance to the coil center. Steel core. Model lab5 Fe.zip
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Flux Density {*107 T)

e 5 2 o 1 | L = I

|:|||||I|||I..I...I....I....I.

0 i 100 150 200 2b0 300 3h0 400

Exercise N 6. Mutual inductance of coils.
See model /abé.zip

Task
Find the dependence of mutual inductance of coaxial cylindrical coils upon the distance between them.

Experiment
EMF in the right coil is measured by ballistic galvanometer (at the switching on).

Problem type
Linear axisymmetrical problem of magnetostatics.

Geometry
The field source is the lest coil. Due to the field symmetry only upper-right quarter aOb is defined. At the
axes of symmetry the boundary conditions are set.
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95
L4

@ 160
el

=f

|
Given data

Relative magnetic permeability of air and copper coils p = 1.
Current density in the left coil j = 100000 A/m°.
There is no current in the right coil, thus it has no affection to the field shape.

Boundary conditions
At the vertical axis of symmetry (line Ob) H; = 0. At the horizontal axis of symmetry Oa B, = 0. From B =
rot A in the cylindrical coordinate system we have at the axis Oa A = const. Field fades at the infinity, so
at the line Oa A = 0 due to continuity of A.

Mutual inductance M - relation of the flux connected with all turns of the right coil ¥ to the current in the
left coil J (which is the origin of the flux).

Here w is number of turns of the right coil, @ - flux across the right coil.
Total current J = * Sgection = 100000 * 0.000875 = 87.5 A. See model lab6.zip

Flux across the right coil,

X, mm Wb, Mutual inductance M, pH.
70 2.656 0.0306*w
150 0.637 0.0073*w
210 0.285 0.0033*w

Exercise N 7. Magnetic field simulation in the air gap of DC electric motor.

See models /ab7.zip and lab7exp.zip

Task
Draw the lines of magnetic field in DC electric motor in the non-ferromagnetic region. Calculate pole
dissipation coefficients for two formulations. First - the coil is defined by current distribution, the magnetic
permeability of steel is finite. Second - simplified formulation: steel assumed to be with infinite
permeability and the coil is modeled by current layer.

Problem type
Liner plane-parallel magnetostatic problem.
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Geometry
Air region is defined by contour abcdefg. Dimensions: ab = 2 mm, ag = 32°, c¢d = 68 mm, bc = 45°, de =
30°, ef = 55 mm. Action of other parts of the motor is modeled by boundary conditions.

T’)
o T’? d
45 o7
oft o (]

Given data
Relative magnetic permeability of steel of rotor and stator p = 7000.
Relative magnetic permeability of air p = 1.
Current density in the coil j = 7000000 A/m?.
Electric power of motor 45 kW.

Simplified model (laboratory unit)
Coil is replaced by the current layer ef, magnetic permeability of steel assumed to be infinite. Problem
field is replaced by the sheet of electroconducting paper of proper shape (abcdefg). Obtaining the lines of
magnetic field is replaced by the lines of equal electric potential in the conducting sheet. This replacement
is correct, as the picture of the field H in the air and field U in the sheet looks the same. Current flows in at
line ef and goes out from line ab. Lines of equal electric potential are measured by digital voltmeter.

Boundary conditions

Model of real motor: due to symmetry at line Od H; = 0, at line Oa A = 0.
Simplified model (laboratory unit): H; = 0 at the steel surface (lines defga and bc) and axis of symmetry
Od, at the line Oa A = 0.

Coefficient of pole dissipation - relation of the full flux to the effective flux (going into rotor) of the pole.

Coefficient of

Dissipative Effective Full flux,
Model type flux, MWb | flux, mMWb | mWb __pole Model
dissipation
Real motor 1.11 51.82 52.93 1.021 lab7 zip
Simplified model 3.39 7548 78.87 1.043 lab7exp.zip

(laboratory unit)
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Electric motor

A brushless DC motor with permanent magnets and three phase coil excitation.

Problem Type:

A nonlinear plane-parallel problem of magnetostatics.

Geometry:

Axial length of the motor is 40 mm.

Cobalt Alloy

The four magnets are made of Samarium-Cobalt with relative permeability of 1.154 and coercive force of

550000 A/m. The current densities for the coil slots are as follows:

1,300,000 A/m? on R*, -1,300,000 A/m? on R,
1,300,000 A/m? on S*, -1,300,000 A/m? on S,

and zeroon T and T.

The inner and outer frames are made of Cobalt-Nickel-Copper-Iron alloy.

The B-H curve for the Cobalt-Nickel-Copper-Iron alloy:

H
(A 20 60 80
m)

B
M

0.19 0.65 0.87

The B-H curve for the steel:

H (A/m) 400

B (T) 0.73

95 105 120 140

1.04 1.18 1.24 1.272

600 800 1000 1400

0.92 1.05 1.15 1.28

160 180 200 240 2500

1.3 1.32 1.34 1.36 1.45

2000 | 3000 | 4000 | 6000

1.42 1.52 1.58 1.60
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EXAMPLES

Magnl: Nonlinear permanent magnet

A permanent magnet and a steel keeper in the air

Problem Type:

A nonlinear plane-parallel problem of magnetostatics.

Geometry:
a0
M M
=
H L
=
G H ALNICO | J
/f / =
[ [) E F
NG
Al 1p 20 B
All dimensions are in centimeters.
Given:

The permanent magnets are made of ALNICO, coercive force is 147218 A/m. The polarizations of the
magnets are along vertical axis opposite to each other. The demagnetization curve for ALNICO:

H, A/m -14728 -119400
B, T 0 0.24
The B-H curve for the steel:
H, A/m 400 600 800
B, T 0.73 0.92 1.05
Problem:

-99470 -79580 -563710
0.4 0.5 0.6

1000 1400 2000 3000

1.15 1.28 1.42 1.52

Find maximum flux density in Y-direction

Solution:

-19890 0
0.71 0.77
4000 6000
1.58 1.60

To avoid the influence of the boundaries while modelling the unbounded problem, we'll enclose the
magnet in a rectangular region of air and specify zero Dirichlet boundary condition on its sides.
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Comparison of results

Maximum flux density in Y-direction:

B(T)

ANSYS 0.42
COSMOS/M 0.404
QuickField 0.417

Magn2: Solenoid actuator

A solenoid actuator consists of a coil enclosed in a ferromagnetic core with a plunger. Calculate the

magnetic field and a force applied to the plunger.
Problem type:
A nonlinear axisymmetric problem of magnetics.

Geometry:

24
16

—] Plunger

KRS

o e e [~~~
I
KGN Care

L

All dimensions are in centimeters.
Given:

Relative permeability of air and coil p = 1;
Current density in the coil j = 1,000,000 A/m2;
The B-H curve for the core and the plunger:
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H (A/m) 460 640 720 890 1280 1900 3400 6000
B (T) 0.80 0.95 1.00 1.10 1.25 1.40 1.55 1.65
Problem:

Obtain the magnetic field in the solenoid and a force applied to the plunger.
Solution:

This magnetic system is almost closed, therefore outward boundary of the model can be put relatively
close to the solenoid core. A thicker layer of the outside air is included into the model region at the
plunger side, since the magnetic field in this area cannot be neglected.

Mesh density is chosen by default, but to improve the mesh distribution, three additional vertices are
added to the model. We put one of these vertices at the coil inner surface next to the plunger corner, and
two others next to the corner of the core at the both sides of the plunger.

A contour for the force calculation encloses the plunger. It is put in the middle of the air gap between the
plunger and the core. While defining the contour of integration, use a strong zoom-in mode to avoid
sticking the contour to existing edges.

The calculated force applied to the plunger F = 374.1 N.
Comparison of results

Maximum flux density in Z-direction in the plunger:

B.(T)
Reference 0.933
QuickField 1.0183

Reference

D. F. Ostergaard, "Magnetics for static fields", ANSYS revision 4.3, Tutorials, 1987.

Magn3: Ferromagnetic C-magnet

A permanent C-magnet in the air. The example demonstrates how to model curved permanent magnet
using the equivalent surface currents.

Problem Type:
Plane problem of magnetics.

Geometry of the magnet:
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7Aa

1:A\\\\

Given:

Relative permeability of the air p = 1;
Relative permeability of the magnet pn = 1000;
Coercive force of the magnet H; = 10000 A/m.

The polarization of the magnet is along its curvature.
Solution:

To avoid the influence of the boundaries while modelling the unbounded problem, we'll enclose the
magnet in a rectangular region of air and specify zero Dirichlet boundary condition on its sides.

Magnetization of straight parts of the magnet is specified in terms of coercive force vector. Effective
surface currents simulate magnetization in the middle curved part of the magnet.

HMagnl: Slot embedded conductor
Problem Type:

A plane problem of time-harmonic magnetic field.

Geometry:
B85
i Air
Lo}
w
i
o
uy
=t
o
18.85
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A solid copper conductor embedded in the slot of an electric machine carries a current / at a frequency f.
Given:

Magnetic permeability of air p = 1;

Magnetic permeability of copper p = 1;

Conductivity of copper ¢ = 58,005,000 S/m;

Current in the conductor I = 1 A;
Frequency f= 45 Hz.

Problem:
Determine current distribution within the conductor and complex impedance of the conductor.
Solution:

We assume that the steel slot is infinitely permeable and may be replaced with a Neumann boundary
condition. We also assume that the flux is contained within the slot, so we can put a Dirichlet boundary
condition along the top of the slot. See HMagn1.pbm problem in the Examples folder for the complete
model.

The complex impedance per unit length of the conductor can be obtained from the equation
Z=V/I

where Vis a voltage drop per unit length. This voltage drop on the conductor can be obtained in Local
Values mode of the postprocessing window, clicking an arbitrary point within the conductor.

Comparison of Results

Re Z (Ohm/m) Im Z (Ohm/m)
Reference 0.00017555 0.00047113
QuickField 0.00017550 0.00047111

Reference

A. Konrad, "Integrodifferential Finite Element Formulation of Two-Dimensional Steady-State Skin Effect
Problems", |IEEE Trans. Magnetics, Vol MAG-18, No. 1, January 1982.
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HMagn2: Symmetric double line of conductors
Problem Type:
A plane problem of time-harmonic magnetic field.

Geometry:

i
i

it
i
i,
o
b

Two copper square cross-section conductors with equal but opposite currents are contained inside
rectangular ferromagnetic coating. All dimensions are in millimeters.

Given:

Magnetic permeability of air u = 1;
Magnetic permeability of copper p = 1;
Conductivity of copper ¢ = 56,000,000 S/m;
Magnetic permeability of coating u = 100;
Conductivity of coating o = 1,000,000 S/m;
Current in the conductors I =1 A;
Frequency f= 100 Hz.

Problem:

Determine current distribution within the conductors and the coating, complex impedance of the line, and
power losses in the coating.

Solution:

We assume that the flux is contained within the coating, so we can put a Dirichlet boundary condition on
the outer surface of the coating. The complex impedance per unit length of the line can be obtained from
the equation

Z:(Vl-Vz)/|

where V4 and V5 are voltage drops per unit length in each conductor. These voltage drops are equal with
opposite signs due to the symmetry of the model. To obtain a voltage drop, switch to Local Values mode
in postprocessing window, and then pick an arbitrary point within a conductor.

The impedance of the line Z = 0.000493 + j 0.000732 Ohm/m.
To obtain power losses in the coating:

1. In the postprocessing mode, choose Pick Elements and pick the coating block to create the
contour.

2. Choose Integral Values and select Joule heat from the list of integral quantities and choose
Calculate.

The power losses in the coating P = 0.0000437 W/m.
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Elecl: Microstrip transmission line

A shielded microstrip transmission line consists of a substrate, a microstrip, and a shield.
Problem Type:

Plane-parallel problem of electrostatics.

Geometry:

The transmission line is directed along z-axis, its cross section is shown on the sketch. The rectangle
ABCD is a section of the shield, the line EF represents a conductor strip.

10

Bir

10

E‘lﬂF
750557 1

Given:

Relative permittivity of air ¢ = 1;
Relative permittivity of substrate ¢ = 10.

Problem:
Determine the capacitance of a transmission line.
Solution:

There are several different approaches to calculate the capacitance of the line:

e To apply some distinct potentials to the shield and the strip and to calculate the charge that arises
on the strip;

e To apply zero potential to the shield and to describe the strip as having constant but unknown
potential and carrying the charge, and then to measure the potential that arises on the strip.

Both these approaches make use of the equation for capacitance:
C=q/U.

Other possible approaches are based on calculation of stored energy of electric field. When the voltage is
known:

C=2W/U?
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and when the charge is known:
cC=q?/2W

Experiment with this example shows that energy-based approaches give little bit less accuracy than
approaches based on charge and voltage only. The first approach needs to get the charge as a value of
integral along some contour, and the second one uses only a local value of potential, this approach is the
simplest and in many cases the most reliable.

See the Elec1_1.pbm and Elec1_2.pbm problems in Elec1 for the corresponding the 1,3 approaches and
the 2,4 approaches respectively.

Results:

Theoretical result C =178.1 pF/m.
Approach 1 C=177.83 pF/m (99.8%)
Approach 2 C =178.47 pF/m (100.2%)
Approach 3 C=177.33 pF/m (99.6%)
Approach 4 C =179.61 pF/m (100.8%)

Elec2: Two conductor transmission line
Problem Type:
A plane problem of electrostatics.

Geometry:

Conductors
Ajr

Ground

The problem's region is bounded by ground from the bottom side and extended to infinity on other three
sides.

Given:

Relative permittivity of aire = 1;
Relative permittivity of dielectric € = 2.

Problem:

Determine self and mutual capacitance of conductors.
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Solution:

To avoid the influence of outer boundaries, we'll define the region as a rectangle large enough to neglect
side effects. To calculate the capacitance matrix we set the voltage U = 1 V on one conductor and U =0
on the another one.

Self capacitance: C11=C=Q1/ U1,
Mutual capacitance: Ci2 = Cz1 =Q2/ Uy,

where charge Q¢ and Q; are evaluated on rectangular contours around conductor 1 and 2 away from their
edges. We chose the contours for the C11 and Cs2 calculation to be rectangles -6 < x<0,0<y <4 and
0 <x <6, 0<y<4respectively.

Comparison of Results

Cu1 (F/m) Ci2 (F/m)
Reference 9.23-10 ™" -8.50-10 2
QuickField 9.43-10 ™" -8.57-10 "

Reference

A. Khebir, A. B. Kouki, and R. Mittra, "An Absorbing Boundary Condition for Quasi-TEM Analysis of
Microwave Transmission Lines via the Finite Element Method", Journal of Electromagnetic Waves and
Applications, 1990.

Elec3: Cylindrical Deflector Analyzer
Problem Type:

Plane-parallel electrostatic problem

Geometry:

Cylindrical deflector analyzer (CDA) is a part of a cylindrical capacitor with angular sector of 127°17'. CDA
has two slits made for the particles to enter and exit the CDA field.

Positive pole Shield

Megative pole —

In this example the beam of electrons enters the CDA perpendicular to the cylinder's radius with initial
kinetic energy Eo = 1500 eV and angle dispersion of 6°

Given:

Radius of external cylinder R, =0.1m
Radius of internal cylinder Ry = 0.07 m
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CDA voltage U = 1000 V
Initial kinetic energy of electrons Ey = 1500 eV
Relative permittivity of air € = 1;

Problem:
Define the beam focus point.
Solution:

At the beginning we solve the electrostatic problem calculating the CDA field. After that we open the
Point Source Emitter dialog using the Particle Trajectory command (View menu). Using the Emitter
dialog page we position the point particle emitter at the center of the CDA's entrance slit (x = -0.076 m,

y = 0.037 m) and specify the range for the starting angles between 62 and 68 degrees. Using the Particle
dialog page we choose the desired particle type - electron - from the list, and define the value of initial
kinetic energy Eo = 1500 eV. To obtain the result, we click Apply and view the particle trajectories on
screen.

Results

The beam focus point: (0.081, 0.027).
The focusing angle (approx.): 127° + 8.5° = 135.5°.

Theory says that with some value of CDA voltage depending on the energy of electrons, the beam will be
focused at the exit slit. In ideal case the voltage for our example would be U = 1070 V. The focusing angle
and the CDA voltage in our example are slightly different because of the CDA fringing effects.

G
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Heatl: Slot of an electric machine

Temperature field in the stator tooth zone of power synchronous electric machine.

Problem Type:
The plane-parallel problem of heat transfer with convection.

Geometry:

wedge

20
25
copper =T

barg - __\

25

/

insulation

106

63

steel \

17

o)

cooling duct

All dimensions are in millimeters. Stator outer diameter is 690 mm. Domain is a 10-degree segment of
stator transverse section. Two armature bars laying in the slot release ohmic loss. Cooling is provided by

convection to the axial cooling duct and both surfaces of the core.
Given:

Specific copper loss: 360000 Wim?;

Heat conductivity of steel: 25 J/K-m;

Heat conductivity of copper: 380 J/K-m;
Heat conductivity of insulation: 0.15 J/K-m;
Heat conductivity of wedge: 0.25 J/K-m;

Inner stator surface:

Convection coefficient: 250 W/K-mz;
Temperature of contacting air: 40 °C.

Outer stator surface:

Convection coefficient: 70 W/K-mz;
Temperature of contacting air: 20 °C.

Cooling duct:

Convection coefficient: 150 W/K-mz;
Temperature of contacting air: 40 °C.
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Heat2: Cylinder with temperature dependent conductivity

A very long cylinder (infinite length) is maintained at temperature T; along its internal surface and T, along
its external surface. The thermal conductivity of the cylinder is known to vary with temperature according

to the linear function A(T) = Co + C4-T.
Problem Type:
An axisymmetric problem of nonlinear heat transfer.

Geometry:

s

7777

i

Given:

R1=5mm, R2=10 mm;
T,:=100 °C, T, =0 °C;
C, =50 W/K'm, C1 = 0.5 W/K-m.

Problem:

Determine the temperature distribution in the cylinder.
Solution:

The axial length of the model is arbitrarily chosen to be 5

Comparison of Results

mm.

Temperature (°C)

Radius (cm)
QuickField
0.6 79.2
0.7 59.5
0.8 40.2
0.9 20.7
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THeatl: Heating and Cooling of a Slot of an Electric Machine

Changing temperature field in the stator tooth zone of power synchronous electric motor during a loading-
unloading cycle.

Problem Type:

The plane-parallel problem of heat transfer with convection.

Geometry:
wedge
20
] s
copper T o
] i 1
-\.\\-\. ﬁ
insulation i
- =
- “w

T
1
~
steal i
o5 |
All dimensions are in millimeters. Stator outer diameter is 690 mm. Domain is a 10-degree segment of

stator transverse section. Two armature bars laying in the slot release ohmic loss. Cooling is provided by
convection to the axial cooling duct and both surfaces of the core.

cooling duct

Given:

1. Working cycle
We assume the uniformly distributed temperature before the motor was suddenly loaded. The
cooling conditions supposed to be constant during the heating process. We keep track of the
temperature distribution until it gets almost steady state. Then we start to solve the second
problem - getting cold of the suddenly stopped motor. The initial temperature field is imported
from the previous solution. The cooling condition supposed constant, but different from those
while the motor was being loaded.

2. Material Properties
The thermal conductivity values are the same as in the Heat1 example. For transient analysis
the values of specific heat C and volume density are also required:

Heat Conductivity ' Specific Heat Mass Density

(J/K-m) (J/K-m) (kg/m®)
Steel Core 25 465 7833
Copper Bar 380 380 8950
Bar Insulation 0.15 1800 1300
Wedge 0.25 1500 1400
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3. Heat sources and cooling conditions
During the loading phase the slot is heated by the power losses in copper bars. The specific
power loss is 360000 W/m?®. When unloaded, the power loss are zero. We suppose the
temperature of contacting air to be the same fro both phases of working cycle. In turn, the
convection coefficients are different, because the cooling fan is supposed to be stopped when
the motor is unloaded.

Loading Stopped
Convection Temperature Convection Temperature
coefficient of contacting coefficient of contacting
(W/K-m?) air (°C) (W/K-m?) air (°C)
Inner stator 250 40 20 40
surface
Outer stator 70 20 70 20
surface
Cooling duct 150 40 20 40

Solution

Each phase of the loading cycle is modeled by a separate QuickField problem. For the loading phase the
initial temperature is set to zero, and for the cooling phase the initial thermal distribution is imported from
the final time moment of the previous solution.

Moreover, we decide to break the cooling phase into two separate phases. For the first phase we choose
time step as small as 100 s, because the rate of temperature change is relatively high. This allows us to
see that the temperature at the slot bottom first increases by approximately 1 grad for 300 seconds, and
then begins decreasing. The second stage of cooling, after 1200 s, is characterized by relatively low rate
of temperature changing. So, we choose for this phase the time step to be 600 s.

For heating process the time step of 300 s is chosen. Please see following problems in the Examples
folder:

e THeat1Ld.pbm for loading phase, and
e THeat1S1.pbm for the beginning of stopped phase, and
e THeat1S2.pbm for the end of stopped phase

Results

[ Temperature ("C)

5]
=]
=T

an L
0 |
0 |

i loading stopped
10

Time (min}

0

0 100 200 300 400 500

Temperature vs. time dependence at the bottom of the slot (where a temperature sensor usually is
placed).
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THeat2: Temperature Response of a Suddenly Cooled Wire

Determine the temperature response of a copper wire of diameter d, originally at temperature Ty, when
suddenly immersed in air at temperature Ti. The convection coefficient between the wire and the air is a.

Problem Type:
An axisymmetric problem of nonlinear heat transfer.

Geometry:

Given:

d =0.015625 in;
T;=37.77°C, To = 148.88°C;

C = 380.16 J/kg'K, p = 8966.04 kg/m®;
a=11.37 W/K-m?.

Problem:

Determine the temperature in the wire.

Solution:

The final time of 180 s is sufficient for the theoretical response comparison. A time step of 4.5 s is used.

Comparison of Results

Temperature, °C
Time QuickField ANSYS Reference

45s 91.37 91.38 89.6
117s 54.46 54.47 53.33
180s 43.79 43.79 43.17

See the THeat2.pbm (main) and THeat2_i.pbm (auxiliary) problems in the Examples folder.
Reference

Kreif F., "Principles of Heat Transfer", International Textbook Co., Scranton, Pennsylvania, 2nd Printing,
1959, Page 120, Example 4-1.
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THeat3: Transient Temperature Distribution in an Orthotropic Metal Bar

A long metal bar of rectangular cross-section is initially at a temperature To and is then suddenly
quenched in a large volume of fluid at temperature Ti. The material conductivity is orthotropic, having
different X and Y directional properties. The surface convection coefficient between the wire and the air is
a.

Problem Type:

An axisymmetric problem of nonlinear heat transfer.

Geometry:
a, Ti
/
.
|
- X
M, Ny, p, €
-
~T(0)=To
Given:
a=2in,b=1in

A« = 34.6147 W/K:m, A, = 6.2369 W/K-m;
T, = 37.78°C, Ty = 260°C;

a=1361.7 WK-m2;

C = 37.688 J/kg-K, p = 6407.04 kg/m°.

Problem:

Determine the temperature distribution in the slab after 3 seconds at the center, corner edge and face
centers of the bar.

Solution:

To set the non-zero initial temperature we have to solve an auxiliary steady state problem, whose solution
is uniform distribution of the temperature Ty A time step of 0.1 sec is used.

Comparison of Results

Temperature, °C
Point QuickField ANSYS Reference

(0,0) in 238.7 239.4 237.2
2,1)in 66.43 67.78 66.1
(2,0)in 141.2 140.6 137.2
0,1y in 93.8 93.3 94.4

See the THeat3.pbm (main) and THeat3_i.pbm (auxiliary) problems in the Examples folder.
Reference

Schneider P.J., "Conduction Heat Transfer", Addison-Wesley Publishing Co., Inc, Reading, Mass., 2nd
Printing, 1957, Page 261, Example 10-7.
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Stres1: Perforated plate

A thin rectangular sheet with a central hole subject to tensile loading.
Problem Type:

Plane problem of stress analysis (plane stress formulation).
Geometry of the plate:

Length: 240 mm;

Width: 180 mm;

Radius of central opening: 30 mm;
Thickness: 5 mm.

180

30

240

Given:

Young's modulus E = 207000 N/mm?
Poisson's ratio v = 0.3.

The uniform tensile loading (40 N/mm2) is applied to the bottom edge of the structure.
Problem:

Determine the concentration factor due to presence of the central opening.

Solution:

Due to mirror symmetry one quarter of the structure is presented, and internal boundaries are restrained
in X and Y directions respectively.

The concentration factor may be obtained from the loading stress (40 N/mm?) and the maximum
computed stress (146 N/mm°©) as

k =146 /40 = 3.65.
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Coupll: Stress distribution in a long solenoid

A very long, thick solenoid has a uniform distribution of circumferential current. The magnetic flux density
and stress distribution in the solenoid has to be calculated.

Problem Type:
An axisymmetric problem of magneto-structural coupling.

Geometry:

Given:

Dimensions R7=1cm, R2=2 cm;
Relative permeability of air and coil p = 1;
Current density j = 10° A/m?;

Young's modulus E = 1.075-10" N/m2;
Poisson's ratio v = 0.33.

Problem:
Calculate the magnetic flux density and stress distribution.
Solution:

Since none of physical quantities varies along z-axis, a thin slice of the solenoid could be modeled. The
axial length of the model is arbitrarily chosen to be 0.2 cm. Radial component of the flux density is set
equal to zero at the outward surface of the solenoid. Axial displacement is set equal to zero at the side
edges of the model to reflect the infinite length of the solenoid.

Comparison of Results

Magnetic flux density and circumferential stress at r= 1.3 cm:

B, (T) G (N/m)
Reference 8.796-10° 97.407
QuickField 8.798:10 96.71

Reference
F.A. Moon, "Magneto-Solid Mechanics", John Wiley & Sons, N.Y., 1984, Chapter 4.

See the Coupl1MS.pbm and Coupl1SA.pbm problems in the Coupl1.zip for magnetic and structural parts
of this problem respectively.
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Coupl2: Cylinder subject to temperature and pressure

A very long, thick-walled cylinder is subjected to an internal pressure and a steady state temperature
distribution with T; and T, temperatures at inner and outer surfaces respectively. Calculate the stress
distribution in the cylinder.

Problem Type:
An axisymmetric problem of thermal-structural coupling.

Geometry:

Given:

Dimensions R7=1cm, R2=2 cm;

Inner surface temperature T; = 100 °C;

Outer surface temperature T, = 0 °C;
Coefficient of thermal exg)ansion a=10" 1/K;
Internal pressure P =10 N/mz;

Young's modulus E = 310" N/m2;

Poisson's ratio v = 0.3.

Problem:
Calculate the stress distribution.
Solution:

Since none of physical quantities varies along z-axis, a thin slice of the cylinder can be modeled. The
axial length of the model is arbitrarily chosen to be 0.2 cm. Axial displacement is set equal to zero at the
side edges of the model to reflect the infinite length of the cylinder.

Comparison of Results

Radial and circumferential stress at r= 1.2875 cm:

or (N/m?) oo (N/m?)
Theory -3.9834-10° -5.9247-10°
QuickField -3.959:10° -5.924-10°

Reference
S. P. Timoshenko and Goodier, "Theory of Elasticity", McGraw-Hill Book Co., N.Y., 1961, pp. 448-449.

See the Coupl2HT.pbm and Coupl2SA.pbm problems in Coupl2.zip for the corresponding heat transfer
and structural parts of this problem
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Coupl3: Temperature distribution in an electric wire
Calculate the temperature distribution in a long current carrying wire.
Problem Type:

An axisymmetric problem of electro-thermal coupling.

Geometry:

Given:

Wire diameter d = 10 mm;

Resistance R = 3-10™* Q/m;

Electric current / = 1000 A;

Thermal conductivity A = 20 W/K-m;
Convection coefficient a = 800 W/K-mz;
Ambient temperature T, = 20 °C.

Problem:
Calculate the temperature distribution in the wire.
Solution:

We arbitrary chose a 10 mm piece of wire to be represented by the model. For data input we need the
wire radius r = 5 mm, and the resistivity of material:

p=R(rd’/4) @'m, and voltage drop for our 10 mm piece of the wire: AU =/-R- 1= 310" (V).

For the current flow problem we specify two different voltages at two sections of the wire, and a zero
current condition at its surface. For heat transfer problem we specify zero flux conditions at the sections of
the wire and a convection boundary condition at its surface.

Comparison of Results

Center line temperature:

T(°C)
Theory 33.13
QuickField 33.14

Reference
W. Rohsenow and H. Y. Choi, "Heat, Mass, and Momentum Transfer”, Prentice-Hall, N.J., 1963.

See the Coupl3CF.pbm and CouplI3HT.pbm problems in Coupl3.zip for the corresponding current flow
and heat transfer parts of this problem.
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SRM Electric Motor

Last years switched reluctance motors (SRM) become a common solution in the application where deep
regulation is required. Some people eve says that SRM opens a new era in electrical drives. Switched
reluctance motor is a combination of a simple brushless motor and a controlling electronic unit. The motor
itself consists of salient pole steel rotor with no winding, and salient pole stator with a coil on each pole.
Depends upon a algorithm of control system, the motor can behave in a different way according to
customer needs.

Design of an SRM motor and control system rely on knowing of the torque and flux linkage as a function
of the current and rotor position. The only way to obtain such dependency is numerical modeling of non-
linear magnetic field with various rotor position and current in the stator coil. That work can be easy done
by QuickField Workbench. The SRM sample allows to get T =f (I, phi) and F = f ( I, phi) dependencies
for any SRM motor, no regards the number of slots and poles and geometrical shape.

To find a torque and flux for a given rotor position and coil current we should solve a problem of
magnetostatic to find magnetic field distribution. The only boundary condition needed is the zero Dirichlet
condition on the outer surface of the stator. The filed sources are given current in the forward and back
coil halves, marked with blue and red on the sketch above. We take into account steel saturation by
defining B-H curves for stator and rotor core.

To achieve high degree of generality, we build the SRM.dII rely upon the geometric model prepared in
advance by interactive QuickField model editor and stored to the .\SRM_Files\SRM_Basic.mod file.
Also the physical data (boundary conditions, B-H curves for rotor and stator core, magnetic permeability
of air and copper) are also prepared in advance and stored to the .\SRM_Files\SRM_Basic.dms file.
Therefore, writing the SRM.dIl code we can concentrate on getting output parameters.

The only geometrical manipulation we have to do programmatically is rotation of the rotor to the desired
position. When needing to model another motor, say with different pole number, we only have to replace
the geometrical model ../SRM_Files/SRM4_Basic.mod to another one with the same name.

Below we first discuss how to use the SRM model supplied with QuickField in the Workbench
environment, and then briefly describe creating of such a model by Workbench application wizard and its
programming.

Using the SRM model
To try the SRM model supplied with QuickField, do the following steps:

1. Run Workbench (Start-=Programs->Tera Analysis->Tools->Workbench)

2. Only once: register the SRM as an exploring object if you do not do that
before.
To register the new object, press the Register New ExploringObject
button and find the name and location of the SRM.dIl. QuickField installation
program puts it to the ..\ActiveField\Examples\SRM folder.
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3. Open new modeling session by pressing the New Session button. If the
SRM.dIl was properly registerd, its icon appears in the list of registered
exploring objects. When you click it, the All Parameters pages appears
with SRM sketch and list of parameters.

Description I Motation I Yalue I LInit | “ariable
Fotor Position Phi 0 deq fes

statar Coil Current e
Air Gap Diameter

According to the SRM design the list contains 3 parameters:
e Rotor Position (Phi);
e Stator Coil Current (la)
e Air Gap Diameter (Da)

The first two parameters intended to be variable, and the last one is used by
postprocessor when building a contour for calculation torque.

Click on the desired item in the Variable column to declare the parameter
to be variable or not.

4. Switch to the Variable Parameters page. If you have chosen both rotor
position and stator coil current to be variable on previous step, you see the
following:

— Ratar Position

[beration ¢ : |
Frarm : ||:| deg To: |360 deg eratan tpe ILlnear j
Min: 0O Max: 360
" = Step: ISE deq

— Statar Cail Current =

[beration ¢ : |
Frarm : ||:| A To: |1|:||:||:||:| & eratan tpe ILlnear j
in: 0 kax: 10000 Step: I—1 oo R

For each parameter you can choose the Iteration type from the list. Now
two iterators are available: the linear iterator divides given range into equal
parts whereas the random one allows to distribute each point individually.

5. When you are ready with input parameter and iteration data, switch to the
Result tab and press the Solve button. The results will appear in the table
when calculated.
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Al Parameters T Y ariable parameters T Hesult T

General

Dizplaving parameter; IMechanical torque j WB

St ataor Coil Curvrent
R 0.0000=+00 1.0000e+13 2.0000e+03
E 0.0000e+00 0.0000=+00 1.2320e-03 4 928103
o
r
P
o
=
i
i
i
o

Graphics ... | E wport |

Help | Show F | Save zession |

E wit |

|S|:|I\.fing 4 problem - Outer [Newton's] iteration: 2; Inner [CE] iteration: 4 of 38 [estimated]

During calculation you cam show and hide QuickField by Show QF button,

select the output quantity to display in the table, display xy-plot in a

separate window. Also, the calculation could be aborted at any time by the

Stop button.

6. When calculation finishes it is good time to save current modeling session to
be able review input and calculated data next time. If you have Microsoft
Excel installed, you can export the result table into an Excel spreadsheet.

7. When you need to model another SRM machine, prepare its geometry
with QuickField model editor interactively, and put its copy into the
SRM_Files directory under you folder where the SRM.dII lives.

model

Every SRM model should have a block labeled as "Rotor" that will be rotated
on each iteration and a pair of block labeled as "Winding+" and "Winding-

". The last represent forth and back sides of a stator coil on each pole.
these coils are considered as connected in parallel.

How the SRM model was created

All

In the rest of this topic we discuss how to create an exploring object for Workbench such as SRM.dIl. To

do that you should be familiar with programming in Visual Basic and with QuickField object model
principles. You also have Microsoft Visual Basic 6.0 installed on your computer before installing
QuickField.

Creating of a new exploring object consists of two main steps: creating the skeleton of code with the

QuickField Exploring Object Wizard and customization the automatically generated code.
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Creating a skeleton of code using QuickField Exploring Object Wizard.

That process is described in full details in the Lesson 3 of the ActiveField tutorial. Below we describe only
the things, that are specific for the SRM model.

The input parameters are:

Description Notation Unit - Vi
Min Max | Default
Rotor Position Phi deg 0 360 0
Stator Coil Current la A 0 10000, 5000
Air Gap Middle Diameter Da mm 0 1000 | 177.75

The first parameter - rotor position - is of geometrical type. That means that the geometry model should
be rebuild and remeshed each time the parameter value changes. The second parameter is of physical
type. When its value changes, the problem is solved again using the same geometry. The last parameter
- air gap middle diameter - is of the postprocessor type. When it changes by Workbench (if we want that),
the QuickField will neither generate new model nor solve another problem. Such parameter is using only
for analyzing results.

We also declare two output parameters:

Name Notation = Unit Value
Mechanical Torque M N*m Torque of the
motor
Pole Flux = Wb The magnetic flux

trough one pole
Customization the code written by the wizard.

In the code modules created by wizard the subroutines that are most likely candidates to modification are
separated in a special module named Custom. In our case it is stored in the SRM.bas file. There are four
procedures defined:

¢ ModifyModel - the place for code modifying the geometry model according
to current values of input parameters;

e SetlLabel - called by framework each time one of the physical parameter
changes its value. Its primary goal is setting values for labels of blocks,
edges, and vertices.

e Calculations - good place for writing code calculating output parameters.

e BuildContour - an auxiliary subroutine that can be used for creating a
contour, if the integral values used for calculation of output parameters.

The main task of our ModifyModel subroutine is selecting the rotor and rotation it on the desired position.
The following code does that:

""" Local variables for all input parameters
Dim Phi As Double
Phi = theParameters('Rotor Position™).Value

""" TODO: Modify QuickField model (Mdl) here
Const Pl As Double = 3.1415926

Dim rotor As ShapeRange

Set rotor = Mdl.Shapes.LabeledAs(Block:="Rotor")
IT Not rotor Is Nothing Then
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rotor.Move gfRotation, PointXY(0, 0), Phi / 180 * PI
End If

Please note that we do not need rebuild the mesh and save modified model - the framework does it for us
automatically.

The SetLabel function is called each time when one of the "physical" parameter changes. This subroutine
have not to set all properties to all labels. Instead, it changes only the value of total current for block
labels "Winding+" and "Winding-"

Case "'Stator Coil Current"

Dim la As Double
la = theParameters('Stator Coil Current').Value

""" TODO: Edit QuickField label corresponding
"Stator Coil Current® parameter
""" Probable code for Block label:
""" - uncomment code below
""" - for Vertex and Edges use "qfVertex" or "qfEdge”
constants
""" - replace "Air" with your QuickField label name

Set Lbs = Prb.DataDoc.Labels(qfBlock) "Select block labels
collection

Set Lab = Lbs("Winding+") "Get label

Set LabCnt = Lab.Content "Get label content

LabCnt.Loading = la

LabCnt.TotalCurrent = True

Lab.Content = LabCnt "Update label content

Set Lab = Lbs("Winding-"") "Get label

Set LabCnt = Lab.Content "Get label content
LabCnt.Loading = -la

LabCnt.TotalCurrent = True

Lab.Content = LabCnt "Update label content

The two subroutines above organize model creation, modification and solving. Now we modify the
routines extracting output parameters. The key subroutine doing that is Calculations. As distinction from
the code generated by wizard, we need three different contours for calculating three integral values: the
torque and the flux linkages with left and right halves of stator coil. Let us put the code for creating each
contour in a separate subroutine: BuildContourTorque, .BuildContourWplus, BuildContourWminus.

The Calculation routine

""" TODO:

""®" - 1f you have point output parameters:

""" Replace "PointXY(0, 0)" by a Point you need accordingly input
parameters

""" - if you have no point output parameters:

""" Remove these code linesDim Cnt As QuickField.Contour

" Mechanical torque

Set Cnt = BuildContourTorque(Res)

Pt.Value(1) = Res.GetlIntegral(qfInt_MaxwellTorque, Cnt).Abs
" Pole Flux

Set Cnt = BuildContourWplus(Res)

Pt.Value(2) = Res.Getlntegral(qfInt _FluxLinkage, Cnt).Abs
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Set Cnt = BuildContourWminus(Res)
Pt.Value(2) = Abs(Pt.Value(2) - Res.GetlIntegral(qfint_FluxLinkage,
Cnt) .Abs)

Each subroutine that builds a contour is very simple:
1. The contour surrounding the rotor for calculation of the torque:

Private Function BuildContourTorque(Res As QuickField.Result)
Dim Wnd As QuickField.FieldWindow "Result field window object
" Get FieldWindow object
Set Wnd = Res.Windows(1)
" Get new Contour object
Dim Cnt As QuickField.Contour
Set Cnt = Wnd.Contour

""" TODO: Build Contour here

Dim Ra As Double

Ra = theParameters("Air Gap Diameter'™).Value / 2#
Cnt.AddLineTo PointXY(Ra, 0), O

Cnt.AddLineTo PointXY(-Ra, 0), 3.1415926
Cnt._AddLineTo PointXY(Ra, 0), 3.1415926

Set BuildContourTorque = Cnt
End Function

2. The next two functions builds contours for flux calculation:

Private Function BuildContourWplus(Res As QuickField.Result) As
QuickField.Contour
Dim Wnd As QuickField.FieldWindow "Result field window object
" Get FieldWindow object
Set Wnd = Res.Windows(1)
" Get new Contour object
Dim Cnt As QuickField.Contour
Set Cnt = Wnd.Contour
Cnt.Delete True
Cnt.AddBlock "Winding+"
Set BuildContourWplus = Cnt
End Function

Private Function BuildContourWminus(Res As QuickField.Result)
Dim Wnd As QuickField.FieldWindow "Result field window object
" Get FieldWindow object
Set Wnd = Res.Windows(1)
" Get new Contour object
Dim Cnt As QuickField.Contour
Set Cnt = Wnd.Contour
Cnt.Delete True
Cnt.AddBlock "Winding-"'
Set BuildContourWminus = Cnt
End Function

Now we can compile our SRM project as SRM.dII file (File->Make SRM.dII.. command) and use it for
calculation.
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Tooth-Slot and Air Gap Model

In this sample we investigate magnetic field and current distribution in the simplified model of a slot of
electric machine.
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The solid rectangular conductor made from cooper lies in the open rectangular slot. The opposite
armature core is considered to be toothless.

On the main screen you can enter the geometric dimensions of the tooth, slot, air gap and conductor, as
well as a few physical parameters. You can change values or accept default ones. Once you are ready
with data editing, press the Calculate button. The QuickField window appears or not depending on the
Show QuickField flag.

The calculation consists of following stages:

1. First the geometry model Slot.mod and the data for DC magnetic problem
are created.

2. Then the main module starts solving of DC magnetic problem and analyze it
result. It calculate the entire flux linked with the conductor, the magnetic
flux crossing the air gap (a "payload" flux) and the flux leakage. It also
calculate the Ohmic resistance and inductance of the conductor per 1 meter
of axial length.

3. Then the geometric model for an AC magnetic problem is created. To take
the tooth saturation into account, we divide the tooth into 7 sub-regions.
The permeability value achieved in the center of each sub region in the DC
problem is set to the AC magnetic problem.

4. Than the sample program solves the AC magnetic problem and determinates
resistance and inductance of the conductor by AC current of specified
frequency.

All the calculation results are displayed in the report window. You can save the report to a text file using
the Save button.

The Tooth example program employs the COMDLG32 component of MS Visual Basic that can be or can
be not installed on your computer. To be sure that all modules needed are installed, use the Setup.exe
program for installing the Tooth sample on your computer.
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Source codes of the Tooth samples are written in Visual Basic. The program is designed as a set of
objects and classes to isolate the calculation and presentation layers. The code that communicates with
QuickField is located in the Solver class (Solver.cls file).

Cable: ActiveField Example

QuickField, enforced by ActiveField technology may be effectively used for multi-physics analysis of
various engineering tasks. This analysis could be highly automated. It even can be implemented as a
Microsoft Word document equipped by the set of VBA macros for automatic creation of QuickField
problem, solving, postprocessing and report generation. Rather complicated example - analysis of tetra-
core cable - is available as ActiveField Cable Example. If you have working knowledge of Visual Basic,
and understanding of QuickField Object model - you are welcome to analyze source code of these
macros.

This document displays the results of cable analysis based on specific modeling parameters. Pictures,
tables and graphs below have been automatically calculated by Professional version of QuickField,
controlled by VBA code implemented as MS Word macros. Corresponding QuickField problems can be
analyzed by the Students version.

1. Model description
2. Input parameters
3. Calculated cable parameters

4. Field pictures

1. Model description.

Conductars

Ca t:-ile-mre insulation
Filling insulator {air)
Inner cable insulation
Protective steel braiding

Outer cable insulation

Figure1. Cable sketch.

This high-voltage tetra-core cable has three triangle sectors with phase conductors and round neutral
conductor in the lesser area of the cross-section above. All the conductors are made of aluminum. Each
conductor is insulated and the cable as a whole has a three-layered insulation. The cable insulation
consists of inner and outer insulators and a protective braiding (steel tape). The sharp corners of the
phase conductors are chamfered to reduce the field crown. The corners of the conductors are rounded.
Empty space between conductors is filled with some insulator, possibly with an air.

It is often required to design a cable according to parameters of the conductor section areas. Conductor
section areas are defined in the Table 1. The tables 2 to 7 describe other input parameters.

2. Input parameters.

Table 1. Conductors' geometric parameters.

Phase conductor area 120 Mm?
Neutral conductor area 35 Mm?
Thread rounding radius (R) 2 Mm
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Table 2. Insulator geometric parameters.

Cable-core insulation thickness
Inner cable insulation thickness
Protective steel braiding thickness
Outer cable isolation thickness

Table 3. The precision.
Areas calculation reasonable error
Table 4. Conductors' loading.

Current amplitude

Voltage amplitude (electrostatics)
Frequency

Current phase (for static problems)

Table 5. Conductors' physical properties.

Relative permeability
Conductivity
Thermal conductivity
Young's modulo

Poisson's ratio

Coefficient of thermal expansion
Specific density

W= =N

0.001

200
6500
50

1
36000000
140
6.9e+10
0.33
2.33e-5
2700

Table 6. Steel braiding physical properties.

Relative permeability 1000
Conductivity 6000000
Thermal conductivity 85
Young's modulo 2e+11
Poisson's ratio 0.3
Coefficient of thermal expansion 0.000012
Specific density 7870
Table 7. Insulator physical properties.
Core
Relative permeability 1
Conductivity 0
Relative electric permitivity 25
Thermal conductivity 0.04
Young's modulo 10000000
Poisson's ratio 0.3
Coefficient of thermal expansion 0.0001
Specific density 900

3. Calculated cable parameters.

Cable physical parameters are presented in the next table.

0.04
10000000

0.0001

Mm
Mm
Mm
Mm

MmZ,

Hz.
Deg.

S/m
W/K-m
N/m?

1/K
Kg/m®

S/m.
W/K:m
N/m?

1/K '
Kg/m®

Inner Outer

1
0
25

0.04
10000000

0.3

0.0001
1050
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Cable outer diameter is calculated using conductor and insulator geometrical parameters put into Table 1
and Table 2. Cable linear weight per meter is calculated from geometrical parameters and specific
densities of the cable components. The whole cable specific density is a total density calculated by taking
into account all cable components.

Table 8. Cable physical parameters

Cable outer diameter | 4.28e+01| Mm
Weight (per meter) 2.74e+00| Kg )
Cable specific density| 1.90e+03| Kg/m?

"Conductors' capacitance" table holds self- and mutual-capacitances of the cable conductors. These
values are calculated in the QuickField electrostatics problem using the charge approach. For each table
row the separate QuickField problem is solved. One of two conductors' surfaces carries a unit charge and
the other conductor's potential is evaluated. The mutual capacitance is equal to: C; = U;/ Q;. Self-
capacitance is calculated by the measurement of the potential at the same charged conductor.

Table 9. Conductors' capacitance, F

Conductor1 | Conductor2 | Conductor3 | Null-cord
Conductor1 | 2.53e-10 1.02e-09 1.95e-09 8.43e-10
Conductor2 | 1.02e-09 2.67e-10 1.02e-09 1.88e-09
Conductor3 | 1.95e-09 1.02e-09 2.53e-10 8.42e-10
Neutral cord 8.43e-10 1.88e-09 8.42e-10 1.28e-10

Conductors' inductances are represented in the Table 10. Values in the columns 2-5 are calculated in the
magnetostatic problem at the phase defined in the Table 4. Values in the columns 6-9 are calculated in
AC magnetic problem. All values are got using the flux linkage approach by the formula: L; = @/ I;. The
table diagonal elements represent the self-inductance values.

Table 10. Conductors' inductance

In magnetostatic problem In AC magnetic problem
C-1 C-2 C-3 0-cord C-1 C-2 C-3 0-cord
Conductor1 | 1.15e-05/ 1.12e-05| 1.11e-05| 1.13e-05 | 6.17e-06| 5.99e-06| 5.94e-06, 6.02e-06
Conductor2 | 1.12e-05 1.15e-05| 1.12e-05| 1.11e-05 | 5.99e-06| 6.17e-06| 5.99e-06, 5.93e-06

Conductor3 | 1.11e-05/ 1.12e-05| 1.15e-05| 1.13e-05 | 5.94e-06| 5.99e-06| 6.17e-06, 6.02e-06
Neutral cord | 3.89e-10| 3.84e-10| 3.89e-10| 4.04e-10 | 6.02e-06| 5.93e-06| 6.02e-06| 6.27e-06

Table 11 includes the impedance and impedance-like values. In the magnetostatics problem the
conductor's impedance (equal to the resistance) per meter is calculated by the formula: R =1/ (pS)
Joule heat per meter in magnetostatics problem is calculated by the formula: P = 1%+ R, where I, is the
root-mean-square current and R is the conductor impedance.

The conductors' impedances in AC magnetics problem are calculated using the Ohm's law as a complex
ratio of the conductor's average potential divided by the conductor total current density. The real part of
this ratio represents the resistance, imaginary part — reactance and the modulus — impedance. The
Joule heat in the AC magnetic problem is calculated using the corresponding QuickField integral.

Table 11. Conductors' impedance.

In electrostatics problem In AC magnetic problem

Conductors | Null cord | Conductor1 | Conductor2 | Conductor3
Impedance, Q| 2.31e-04 7.94e-04 2.40e-04 2.55e-04 2.80e-04
Resistance, Q| 2.31e-04 7.94e-04 2.15e-04 2.37e-04 2.59¢e-04
Reactance, Q| 0.00e+00 | 0.00e+00 1.08e-04 9.41e-05 1.06e-04
Joule heat, W | 4.63e+00 0.00e+00 | 4.71e+00 4.74e+00 4.71e+00
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The generated heat field is exported from the AC magnetics problem into the heat transfer problem. As a
result of QuickField simulation you can see the cable exterior surface average temperature, heat flow
from the cable surface and the average temperatures of all conductors. Average temperatures are relative
numbers presented in Celsius assumed that ambient space temperature is 20 °C.

Table 12. Cable heat parameters

Exterior surface average temperature, 2.35e+01 | °C

Heat flow 1.42e+01 | W
Conductors average temperature, °C
Conductor1 Conductor2 Conductor3| Null-cord
4.59e+01 4.68e+01 4.59e+01 | 3.93e+01

Stress analysis problem is the utmost one, that imports the temperature field from the heat transfer
problem and the magnetic forces from the AC magnetic problem. Due to this magnetic and thermal
loading the cable components become deformed. The numerical values of these deformations are
presented in the next table.

Table 13. Stress analysis problem results.

Maximal displacement 5.14e-02 | Mm
Maximal Mohr criteria value| 8.16e+07| N/m?

The strength value is important for the cable fault analysis.

Table 14. The strength.
Maximal peak strength value| 8.78e+03| A/m

The "Strength" field is shown on a figure below as well as the "Total current density", "Energy density",
"Momentary flux density", "Temperature" and "Displacement” field pictures.

Section 5. Field pictures.
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Energy density
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000058

. |
Displacemeng g'fpm?ﬂmnt

© R. Bargalld. ELECTRICAL ENGINEERING DEPARTAMENT. EUETIB-UPC 46 of 46




EINITE ELEMENTS FOR ELECTRICAL ENGINEERING APPLICATIONS

Main inductance determination in rotating machines. Analytical and Numerical
calculation: A didactical approach
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Abstract.

The accurate determination of saturated magnetizing inductances has been the subject of much research over a long time. These results
are necessary for the appropriate adjustment of control regulation loops and for the improvement of transient response and stability of
electric drives. Traditionally the analytical calculation involves the determination of some empirical factors, such as the d-axis and g-axis
reactance factors. In references [1] to [3] there are many expressions for salient and non-salient pole machines, but these are valid only for
the considered pole shape.

If possible we should use an expression, or method, independent of the pole shape. Analytical formulation is not adequate for this reason.
Now we can use the FE method to calculate this and other parameters.

In addition the time devoted today to the design of electrical machines has been reduced and this makes it impossible to use a lot of
empirical or graphical methods. The use of FEM provides a way to quickly and accurately calculate the size of an electrical machine and
its parameters. This paper has been written to describe this methodology in an educational environment.

Keywords.

Main inductance determination, FE method, cylindrical and salient pole machines.
1. Analytical calculation of magnetizing inductances.

In the following paragraphs we describe how obtain an analytical expression for the main inductances. This methodology
shows how these are function of the pole shape and how explain this in an educational environment.

A. Uniform air gap machine
The magnetizing inductance of a uniform air gap machine can calculated according to the following procedure:
Calculation of:

A. MMF created to the 3-phase equilibrate current system

B. Airgap induction B, (only considers the fundamental component)
C. Total flux per phase @
D

Main inductance determination: L =®/I

The following expression is the result of this process.

L :ﬂo.m.D'L.(N'e‘jz )
T geq p

with: m — number of phases, D — air gap diameter, L — length of the machine, geq — equivalent air gap (with Carter’s and
saturation correction), N — number of turns per phase, p — pole pairs.

B. Salient pole machines
The calculation is similar, but we found some differences:
- We calculate the MMF projection over two axis: direct and quadrature axis.

- Thus we determine the induction create for these two components and determine the fundamental component.
- Thus we can calculate the flux and the main inductance for every component:
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Lpg =@ /1;L,, =@, /I 2
These process leads to the following expressions:

Lug =Kg Lui Lyg =Ky oLy ©)

Where L, is the magnetizing inductance calculate supposing that the air gap is uniform and kq and k4 are coefficients that
depended on pole shape.

The following table shows these coefficients for different pole shape configuration; the first row is for a classical salient
pole synchronous machine and the others are for permanent magnet machines.

Table I. direct and quadrature correction factors.
Salient pole synchronous machine

Ky ==+ sin(y - 7))
T
1 . 2 T
k =—-|w-z—sin(y-7)+—-cos(y -—
=2 sinty-7) 2 cos-5)

PMSM. Surface magnets kd =1 kq =1

PMSM. Inset magnets 1 . .
Kq :—-[y/-ﬂ+sm(1//-7r)+cg '(ﬂ—y/~7r—SIn(l//'7Z'))]
V4

111 . .
kq=ﬂ_~|:c-(l//'ﬂ—SIn(l//-ﬂ'))-f-(ﬂ'—l//-7Z'+Sln(l//-7[)):|
g
C, z1+2
PMSM. Buried magnets .
K =2V Z.COS(MJ
7 1=y 2.) B _D-2-p:h
. D
K, =£-(1//-7z—sm(z//-7z)) T
T

With: T,- pole pitch, i = pole arc/ pole pitch, h - permanent magnet height.

2. Numerical determination of magnetizing inductance.

The numerical determination of magnetizing inductance involves the realization of Finite Element Analysis (FEA) and the
determination of the magnetic energy stored in the air gap. The following paragraphs describe the relations between this and
the magnetic inductance. In addition we describe two ways for the calculation of stored energy; the first is by integration of
density of energy and the second is by circuit modelling.

A. Magnetic energy stores in the air gap (uniform air gap machine).

If we consider an ideal machine with sinusoidal distribution of the induction along the air gap, that is,

B= é . Sin[”] (4)
TP
and we calculate the magnetic energy stored in the airgap, we obtain:
2 2
Wep M (gj DL . )
2.z p geq
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If we combine (5) with (1) we can write:

w=" e, (6)
2

m

usually m = 3. You can obtain the same expression if you consider the electrical circuit model with coupled coils.

For example for the induction machine model with 3 coils in the stator and 3 coils in the rotor, that is:

Las Labs Lacs Lar Labr Lacr
L=| = b L
- 11Ls 1= Lpas Lps Lpes | r 1= Lbar Lor Lper
LI’S Lr
Lcas Lebs Les Lcar Lebr Ler
(7
2-r 4.7
Lasar " COs Oy Laspr €0s(6y + ——)  Lgger -cos(dy + )
3 3
t R/ 2.
[Lﬂ]z[Lm] = | Lbsar ~c0s(dy + ) Lpsbr *€0S Oy lﬁwr'w“9r+4;ﬂ
2-r 4.7
Lesar "€08(0y +——)  Legpy -Cos(dp +—) Leser < COs Oy
3 3
8,
.:r‘““
a

Figure 1. simplified machine.

We obtain:
W :%ZLU’ 'Ii'lj
_LaS a4 Ly -i%s + Ly 0% + Ly, -i2ar + Ly, 0% + Ly, -i%r L]
Lops o “ips + Lol “los F Logs *les g +
Loor “Har o + Lo By -lgr + Logr “Hgy <1 + ®
2+ Ly, o i+ L, g iy + Lo, i -y +
Locar “os “Tar * Lisor “Tns “Tor + Lpser “ps ey +

+ Lcsar L Lcsbr og Iy + Lcscr o Lo

abr

N |-

bsar

(We omitted the terms with cos() to simplify the expression). If we consider the following values, corresponding to an
instant with:

1
2 ©

we obtain:
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W:E-Lm-IZJFELDS-I2 (10)
2 2

Except for the last term, this is the same expression (6). This term is a result to the dispersion effect and will be not
considered for the main inductance calculation.

B. Magnetic energy stores in the salient pole machine.

We can obtain an expression for the magnetic energy stored in the case of the salient pole machine, but this takes longer to

determine. We develop an expression based on circuit model approximation. In the salient pole machine we consider the
first harmonic approximation for the inductance variation, i.e.,

L~=Ll,+L,cos20, (11)

Figure 2. Salient pole machine
for the 3-phase synchronous machine we can write:

L,=L,+L,+L,cos26,
L, =L, +L,+L,cos(26, +27/3)
L. =L, +L,+L,cos(26, —27/3)
L, =—L,/2+L,cos26,, (12)
L, =-Ly/2+L,cos(26, +2x13)
L, =—-L,/2+L,cos(26, —27/3)
L, =L, cosé,,L, =L, cos(g, —27/3),

L, =Ly cos(8,, +27/3)
The energy stored is:
L, i%a+Ly, -i%+L, -i%+Lg-i% +

W = Lbc'ib'ic+Lac°ia'ic+Lab'ia'ib+ (13)

N~

2.

+Laf'| 'If+Lbf'|b'|f+ch'|C'lf

a

(We omitted the terms with cos() to simplify the expression). If we consider the following values, corresponding to an
instant with:

oo ! (14)

i, =0 (without field current)
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We obtain the following expression:
w=3.2 -[3- L, +3 L, -cos(2-¢99r)}+3Los 12 (15)
2 2 2 2

The last term is a result to the dispersion effect and will be not considered for the main inductance calculation.

If we consider two selected positions for the rotor, i.e.

® cos(2-6,)=1= Direct field orientation

® cos(2-6,)=-1= quadrature field orientation

Some after algebraic manipulations, we obtain:

W:E-IZ- §.|_0+§.|_2 +§|_m‘|2
2 2 2
(16)

c0s(2-6, ) =1= 1L, :%[LO +L,]

W:%lz-Lmd+gLos~|2

3 3 3 3

W=2u12 2, -2, (42, 12

2 [2 2 2} 2

c0s(2-6,)=-1= |_mq=%-[|_0—|_2

W=§-|2-Lmq+§Lm~
2 2

A7)

IZ

C. Inductance determination by means of flux concatenation

Another technique for the calculation of inductance is by the use of flux concatenation by a coil. If we consider a magnetic
field distribution along the air gap, and its first harmonic, we can calculate the flux concatenation and the main inductance:

LZ_ZN'JS‘VXA-dSA §Adf
| |

=N- (18)

If we consider a salient pole machine, we use a flux oriented over the direct and quadrature axis respectively, for the
determination of direct and quadrature inductances.

3. Practical Applications

The following paragraphs show three examples of determination of main inductance. Two of them are compared with
experimental results.

A. Asynchronous machine: 1.5 kW; 50 Hz; 220 / 380 V; 6.4/ 3.7 A; cose = 0.85; 1420 min-1; F class; J = 0.0105 kgmz; A.
Connexion.

Geometric and electrical data: 36/28 slots; 44 conductors/slot; D = 80 mm; g = 0.375 mm; L = 100 mm. We considered
that k -k, =1.3 and £=0.955.
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Figure 3. FEM model for asynchronous machine. Only ¥ of the machine has been modeled.

Table 11. Main inductance for asynchronous machine.

Method Ly, (H)
Analytical calculation 0.310
FEA 0.313
Experimental results 0.255

B. Synchronous machine: 6 kVA; 220 V; 15.8 A; 50 Hz; 1500 min™; Y connexion.
Geometric and electrial data: salient pole with uniform airgap (under the pole) g =2 mm; D = 304 mm; L = 100 mm; w =
0.55; 36 slots; double layer lap winding,; 5 conductors per slot and layer. We considered that k, -k, =1.3 and £=0.955.

Figure 4. FEM model for sy;c_hronous machine. Direct field orientation. Fif;ﬂrt_a 5. _(3uadrature field orientation

Table 111. Main inductance for synchronous machine.

Method Lq (MH) Ly (mH)
Analytical calculation 9.84 4.25
FEA 10.7 4.23
Experimental results 7.42 5.30
(reduced slip test)

C. Synchronous machine with permanent magnets. 5.1 Nm; 3500 min™; I = 2.56 A; F class
Geometrical data: D = 80 mm; L = 68.9 mm; 36 slots; 6 pole; 35 conductors per slot; single layer lap winding; £ = 0.96;
permanent magnet height h = 3mm; g = 0.5 mm; w = 0.65; k_-k_, =1.3; surface permanent magnet.

In this case to impose ir = 0 we change the PM characteristic from a non-magnetic material with the same magnetic
permeability of the PM. This machine is considered as uniform air gap machine due to the value of recoil permeability of
the PM (near to 1.0)

© R. Bargallo. ELECTRICAL ENGINEERING DEPARTMENT. EUETIB-UPC 6de7?




EINITE ELEMENTS FOR ELECTRICAL ENGINEERING APPLICATIONS

Figure Cs 6 and 7. FEM model for synchronous machine. Direct field orientation. Quadrature field orientation

For this machine we determined the inductance by the method of flux concatenation. We obtain the magnetic field
distribution and harmonic components showed in the figures 8 and 9.

Figure 8. Magnetic field distribution along the airgap. Figure 9. Harmonic distribution of magnetic field.
The following table (1V) shows the calculated values.

Table 1. Main inductance for synchronous machine with PM.

Method L (mH)
Analytical calculation 6.55
FEA (energy) 5.15
Flux method (FEA) 6.0

3. Conclusions.

e We explained some methods to determine the main inductances for alternating current machines in an educational
environment.

e We considered correction factors that are dependents on the pole-shape configuration.
e FEM is more precise than analytical calculation and is not dependent on an empirical or geometrical factors.

e Some of these experimental results are discordant with theoretical results due to estimation of some geometrical
measures and magnetic characterization.
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Abstract. The paper deals with the determination and an
evaluation of steady state performance characteristics of a
synchronous motor with surface mounted permanent magnets.
At the beginning, a numerical calculation of the magnetic field
distribution of permanent magnet synchronous motor (PMSM),
under consideration is carried out. For this purpose, the Finite
Element Method (FEM) is applied. By using output data from
the field computation, all relevant characteristics of the motor
are determined. The results of the numerical calculations are
presented by diagrams. When possible, calculated steady state
characteristics are compared with experimentally obtained
ones; they show a very good agreement. An evaluation of the
steady state behaviour of a permanent magnet synchronous
motor, based on the Finite Element Analysis (FEA) is
presented.

Key Words

Permanent Magnet Synchronous motor, FEM, FEA, Magnetic
flux density, Coenergy, Electromagnetic torque.

1. Introduction

The 3-phase permanent magnet AC motor, acting as
conventional synchronous type motor, has found
renewed interest in the last two decades [1], [2]. The
recent development of high energy magnets has
enhanced their application in wide range of areas. The
built-in of permanent magnets in the rotor core of
synchronous motors as an excitation, and in particular the
use of samarium-cobalt or neodymium-boron-iron
magnets has challenged innovations in the permanent
magnet synchronous motor (PMSM) design and analysis.
In the paper, parameters and steady state performance
characteristics of a PMSM are determined and analysed.

The main task is always to calculate steady state charac-
teristics, as exact as possible. It has been found as rather
complicated issue. It is obvious that the stress should be
put on the exact determination of the parameters, as they
are "playing" an important role in the accuracy with
which all the characteristics of the PM synchronous
motor under consideration will be derived.

2. Object of Study

The object of investigation is a Koncar motor type EKM
90M-6, with rated data: 18 A, 10 Nm, 1000 rpm. The
motor is supplied from an AC source at 50 Hz, by current
sine waves. Six permanent magnet poles made of SmCo5
are surface mounted on the rotor. The side view of the
motor and its geometrical cross section are presented in
Fig. 1 and Fig. 2, respectively.

Fig. 2. Cross-section of the motor EKM 90M-6



3. FEM Calculation of PMSM

The Finite Element Method (FEM) has been used
extensively in the numerical calculation of the magnetic
field in electrical machines, in general. The output
results, and a possibility to use them for calculation of
both electromagnetic and electromechanical
characteristics, are an excellent basis for carrying out
Finite Element Analysis (FEA). Many researchers all
over the world, including the authors of this paper, have
done a lot of work in this area. Many papers in this topic
have been published [3]-[11]. Different software
packages exist in use. The presented results in the paper
are computed by using an user friendly software package
FEMM [12].

In the first step, usually considered as a pre-processing
stage, depending on the user choice the mesh of finite
elements with an appropriate density is generated fully
automatically. In the FEA of the PMSM it is consisted of
17,190 nodes and 34,041 elements. For the purposes of
FEM calculations of the magnetic field in the motor
under consideration, the mesh is spread over the whole
cross-section of the motor, as can be seen in Fig. 3.

In the pre-processor, named femm.exe all requested input
data are included: * the exact geometrical cross section of
stator and rotor magnetic core; ® current density in the
excited stator windings; ® all boundary conditions of the
region which is going to be analysed; ¢ all material
characteristics of the motor (permanent magnets, copper
wire, B-H magnetising curve). The numerical FEM
model of the PMSM, being completed, is ready for
practical use.

When applying the software package FEMM for analysis
of the permanent magnet synchronous motor, the
magnetic problem is considered to be the time dependent
harmonic problem. Hence, the calculations of the
magnetic field are performed at rated frequency f,=50Hz.
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Fig. 3. Finite elements mesh of the PMSM

The field solutions are obtained by running the FEMM
solver, called fkern.exe. As the whole cross section of the
motor is used, only the first order Dirichlet's boundary
conditions are applied; on the outer stator line and the
inner rotor line it is set to be A=0.

Armature currents in the stator windings are varied from
I=0 to the rated value I,=18A. Rotor is freely moving
(rotating) in the air-gap, continuously changing position,
and the d-axis of the rotor is continuously taking
different angles 0 against the referential axis of the stator,
firmly linked with one of the winding axes.

After the processing step is executed, the values of
magnetic vector potential in every node of the motor
domain are obtained. Later, one can use them for many
purposes. The unit femmview.exe in the FEMM package
is offering user friendly calculations and graphical
presentations of the most important electromagnetic and
electromechanical quantities.

A. Magnetic Field Distribution

The best way to understand the phenomena in any
investigated motor is "to get inside and to see" the
magnetic field distribution. Graphical presentation and
visualization of the FEM results give the magnetic flux
distribution in the cross-section of permanent magnet
synchronous motor. A part of the most interesting results
of the calculations are given in continuation.

The magnetic field distribution in PMSM is presented in
Fig. 4, at following regimes: * (a) no-load condition, i.e.
zero armature current, meaning magnetic field obtained
by the permanent magnets only; ¢ (b) rated-load with
rated stator winding current I,=18A and rated load angle
5,=39° [deg.el.], i.e. 6=13° [deg.mech.]; * (c) loading
condition at pull-out (maximum value) torque, meaning
load angle 8,,,,=90° [deg.el.], i.e. 6=30° [deg.mech.].

(a) no-load at I=0 and 6=0 deg.
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(b) pull-out load at I,=18 A and 6=30 deg.

Fig. 4. Magnetic flux plots in the middle cross-section of
PMSM under typical operating conditions

The FEMM software package enables comprehensive
presentation of the spatial distribution of magnetic flux
density along an arbitrary selected line, as well. The
distribution along the mid-gap line is presented in Fig. 5
(a), (b) and (c), in the same way as precedent, at the same
operating regimes and loading conditions of the PMSM.
The following diagrams are spanned to one pole pitch.

These diagrams can be used for carrying out a profound
analysis of the air-gap magnetic field properties
regarding both intensity and shape. When the permanent
magnet synchronous motor is loaded, the influence of
armature reaction magnetic field is clearly shown, in the
figures. The influence of stator core teeth, on the air-gap
field distribution is also clearly indicated in the figures.
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(c) pull-out load at I,=18 A and 6=30 deg. (8,,,x=90 deg.cl.)

Fig. 5. Mid-gap magnetic flux density spatial distribution

B. Air-gap Flux Linkage

The numerical calculation of fluxes is based on the field
theory, applied on a bounded and closed systems. If the
calculations are performed per pair of excited poles, it is:

d)g:J.rotA-dS:§A-dr:jB-dS (1)
z C z



For N excited turns, the air-gap flux linkage is:

¥, =N-O, :”(B-n)ds ©)
S

C. Computation of Inductances

It is very important matter to calculate as accurate as
possible the values of the parameters of the PMSM. Of
the most important significance are the direct- and the
quadrature- axis inductances, as they are determining
corresponding synchronous reactances [13]; it is well
known that they are the most significant parameters when
dealing with steady state and/or dynamic performance
analysis of PMSM.

The numerical calculation of inductances is based on
FEM results. It is performed separately for d- and g- axis.
In this case, it is found to be sufficient to calculate
magnetic field only along one pole pitch. Neumann's
boundary conditions of the second order, are imposed on
the side lines of the cut [14].

The field should not be excited; it means that permanent
magnets have to be replaced with finite elements related
only with a correspondent permeability (p,=1.05), but not
carrying the magnetic remanence (B,=0.95 T). Only the
armature winding is energized in an appropriate way
[15], [16], as explained bellow:

1) d-axis:  When calculating the direct axis
inductance L4, currents in the armature winding are
distributed to peak at a quadrature axis, producing field
with a peak at direct axis. The magnetic field distribution
is presented in Fig. 6.

Fig. 6. Magnetic flux distribution for L, calculation

2) g-axis:  The quadrature axis inductance Lg, is
calculated in similar way as L. In this case, the armature
field is moved forward in space for 90%l. and produces
peak at a quadrature axis. It means that armature currents
of the stator windings peak at the direct axis. In this case,
the magnetic flux distribution for one pole pitch, and
with the same boundary conditions when calculating d-
axis magnetic field, is presented in Fig. 7.

Fig. 7. Magnetic flux distribution for L, calculation

In general, the inductance is calculated as a ratio of the
flux linkage to the armature current, leading to:

¥
L=7 )

The previous equation is applied for the computation of
the d-axis and g-axis inductance. The corresponding flux
linkage w, for each studied case is calculated by applying
respective results FEM in Eq. (3); the magnetic field
calculations are carried out in a way as previously has
been explained, in accordance with Fig. 6 and Fig. 7.

As it was assumed the fictitious direct/quadrature win-
ding to have the same number of turns as the real stator
phase winding, it is requested to introduce another factor
to find the direct- and quadrature- axis inductance, respe-
ctively [14]. For a 3-phase AC machine, the armature
current in the direct/quadrature axis would have to be 3/2
times as great as the phase current to produce the same
magneto-motive force along the respective axis as the
three phase winding. Hence,

L

Lig=3,3 )

The calculations yield to results:

Ly=5816mH and L,=5.803 mH 5)

4. Motor Parameters Determination

The two-axes model of the synchronous machines is well
established classical approach for an analytic-graphic
investigation of their behaviour [13]. Many researchers
widely use this method for fast prediction of the initial
data for further more detailed and deepened analysis [17].
The basic idea is to develop and to use a set of equations,
describing the motor performance in d,q reference frame
and in terms of the loading angle 3. The only request is to
have available the motor parameters. The accuracy, with
which the performance characteristics of the PMSM will
be determined, is in the direct dependence of the
accuracy with which the motor parameters are calculated.



Some of the motor parameters could be easily measured,
some are available from the producer's data; but very
often their values are unknown, and it is requested an
experience and skill to apply in the best way existing and
well known numerical, experimental or analytical
calculation methods. Different approaches are possible.

Starting with the numerical procedure, the d,q parameters
of the PMSM under consideration are determined. By
using the FEM results computed for Ly and L, given in
the previous heading with Eq. (5), one can determine the
values for d,g reactance of PMSM, at 50 Hz as:
Xq=1.827 [Q] and Xq=1.823 [Q]

The already known fact that, that in synchronous motors
with surface mounted permanent magnets, there is almost
no difference between reactance along d- and g-axis has
been also proved in this case.

Armature winding resistance R, and a leakage inductance
Ly, per phase are determined from an experimental test-
ing investigation of the permanent magnet synchronous
motor type EKM 90M-6 [2]. Their measured values are
given bellow:

R=0.1242 [Q]

Ly, =2.2 [mH] = X,=0.691[Q]

Having available the parameters of the PMSM, the
phasor diagram at rated operating conditions is construct-
ed [17], and is found the rated loading angle to be:

8 = 39.2 [deg.el]

This value of the loading angle of the considered motor
at rated operating conditions, will be determined by using
numerical calculation of the steady-state characteristics
via Finite Element Method.

5. Steady-State Characteristics

In the engineering practice, the intention of researchers,
producers and users is always focussed to an estimation,
analysis and evaluation of the electric machine beha-
viour. For that purpose, it is requested to have available
performance characteristics, as accurate as possible.

The armature currents / and rotor positions 0 along one
pole pitch, are arbitrary selected. The rotation is suppose-
ed to be counter clockwise. The reference axis is selected
to be the 4-phase axis of the stator windings; the initial
rotor position and 6=0 deg. mech. is defined when stator
A-axis and rotor N-pole axis (d-axis) are in accordance.

The PMSM is analysed at different operating conditions.
Numerical calculations of the most relevant electro-
magnetic and electromechanical quantities, based on the
FEM post-processing results, are presented in the
following subsections.

A. Magnetic Flux Density

The flux density B is calculated from the basic relation
used in the definition and introduction of the magnetic
vector potential A, in the computations of the magnetic
field with Finite Element Method. The equation defining
the link between 4 and B is:

VxA=B (6)

Applying the numerical procedure for its solution in the
air-gap domain, magnetic flux density B, per pair of
poles is computed. In Fig. 8, characteristics of the flux
density, for three typical armature currents / (zero, half of
the rated and rated) and different rotor positions 6 along
one pole pitch (0—60 deg. mech.) of the motor are
presented.
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Fig. 8. Magnetic flux density characteristics B, = f(6,I)

B. Magnetic Field Coenergy

In linear magnetic field problems, the magnetic energy W
and the coenergy W' are equal. But, in the most cases, the
problem is non-linear, so the coenergy is computed by
using:

W’:%J.J-Adv 7
Vv

In fact, this quantity has no physical explanation, but it is
very useful for calculation of the electro-magneto-
mechanical quantities when an energy concept is applied.

For the quasi static model of the PMSM, electromagnetic
coenergy W' is calculated numerically from the following
expression:

1
W(0.1) = j y(1.0)dI | (8)
0

6=const

The magnetic coenergy is calculated in dependence of
the position of moving parts in the domain (the rotor) at
arbitrary selected armature current. The calculated
characteristics are presented in Fig. 9.
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Fig. 9. Magnetic coenergy characteristics W'= f(0,)

C. Electromagnetic Torque

The knowledge of the static torque characteristics is very
important issue for carrying out analysis and evaluation
of behaviour of electric motors. For calculation, various
approaches exist. In theory, the torque is computed from
the field solution in a number of various ways. Three
approaches for calculation are in practical use: Flux-
Current Method, the Maxwell Stress Method and Virtual
Work Method. In this paper, the energy concept for
numerical calculation of torque in the PMSM is applied.

The electromagnetic torque T, is effected by the
variation of the magnetic field coenergy in the air-gap
domain, at virtual displacement of the rotor, while the
armature current is forced to be constant.

The equation for calculation is derived in the form:

7,.0,1)= M

20 | I=cons. (9)

The results of calculations, performed for rated current
1,=18 A and [,,/2=9 A, are presented in Fig. 10.
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Fig. 10. Electromagnetic torque characteristics Te,,, = f(0,I)

7. Performance Evaluation of PMSM

The proposed methodology by implementing different
methods for calculation of steady-state characteristics
under different operating conditions, enables to carry out
a deepened performance analysis of the permanent
magnet synchronous motor, and an evaluation of its
behaviour at various loads.

The Finite Element Analysis (FEA), based on the compu-
tations performed by using FEM, enables to evaluate the
magnetic field properties in the whole investigated
domain of the PMSM. The Figures 5. where the spatial
distribution of the magnetic flux density is presented are
showing the effect of the armature reaction field on the
main PM excitation field, in the most natural and evident
way. The same phenomenon is also recognised in Fig. 8.,
presented by the points where the magnetic flux density
characteristics B, = f(0,/) are passing through zero values.

The particular FEM calculation is performed, and the
inductances, i.e. the reactances along the d,q axes are
determined. By using them, the phasor diagram of the
PMSM under rated operating conditions is constructed;
the rated loading angle is found to be &, = 39.2 [deg.el.].
At the same time, the FEM results for the electromagnet-
tic torque calculations, and the corresponding characteri-
stics Tem = f(0,/) presented in Figure 10., allow to
determine numerically the rated loading angle, too. From
the characteristic calculated at the rated armature current
1,=18 [A], for the rated value of torque 7,,=10 [Nm] one
can easy found almost the same value for 8,=39 [deg.el.].

The performance characteristics of the considered PMSM
are verified in two ways, depending on the available data.
Some of the computed results are compared with the data
obtained directly from the producer, and the others, with
the experimentally obtained ones.

The armature windings’ parameters are calculated in two
ways: the resistance per phase R, is calculated
analytically; the leakage inductance Ly, per phase is
determined by using three-dimensional magnetic field
calculations in the whole investigated domain of the
PMSM [2]. These parameters are also measured.
Showing a very good agreement, they prove the applied
methodologies as accurate and reliable.

As a verification of this work, here bellow is presented
only a brief comparison of armature current /, at rated
load torque 10 [Nm], determined by different methods:

Calculated: 1., =18[A]

calc

Measured: =17.6[A]

Imeas
The above presented analysis is justifying the applied
methodology for calculation performance characteristics
of the PMSM type EKM 90M-6, as accurate and correct.
Consequently, it can be recommended for similar
calculations of any type of synchronous motors.



Conclusion

Finite Element Analysis is the best way for performance
evaluation of the electrical machines in general.
Presented approach, when applied on a surface mounted
permanent magnet synchronous motor is proving the
statement. Obviously, the phenomena outside of the
magnetic core (i.e. end regions) are not showing an
important influence, so the steady state characteristics,
calculated by using Finite Element Method, in the 2D
domain, are with the satisfactory accuracy.

This fact that the rated loading angle, determined with
two different approaches is with the almost same value,
is proving two important contributions presented in the
paper: * first, the motor parameters calculated by FEM
approach are quite accurate; ® second, the use of the
phasor diagram for determining the rated loading angle is
proved to be correct. Knowing that the phasor diagram is
drawn with FEM calculated values of the reactance Xy
and Xj, the direct conclusion is that their values can be
anticipated as accurate. On the other hand, the static
electromagnetic torque characteristics are also determine-
ed by using FEM, but in a quite different procedure. Both
procedures giving the same results are obviously correct.

Measured values and the testing results are the best way
to confirm both analytically and numerically calculated
parameters and characteristics. The mutual agreement
presented in the paper, is proving the proposed approach
and methodology as accurate.

The authors are foreseeing the future task is transient
performance and dynamic analysis of the considered
PMSM. This work and in particular the presented results,
showing an excellent agreement, can be used as good
basis and relevant guide.
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Resumen. En este trabajo, se analiza la influencia del
tamafio de los imanes en el comportamiento de un motor
sincrono de imanes permanentes (MSIP) de baja velocidad, con
los imanes montados en la superficie del rotor. Se comparan dos
motores con distintas geometrias del rotor (modificacion del
tamafio de los imanes) e igual estator y se observa la influencia
en las caracteristicas principales de la maquina. Hemos
comprobado que para un motor de 5 kW, al aumentar el
volumen de los imanes en un 66 %, el valor de la corriente del
estator se reduce en un 49 %. El estudio del comportamiento del
motor se realiza utilizando el método de elementos finitos
(MEF). El método constituye una aplicacion industrial al disefio
y modelado de este tipo de méquinas y puede ser util para
determinar formulas precisas para el célculo de la corriente del
estator, par, factor de potencia y rendimiento de la maquina,
cuando se modifica el tamafio de los imanes.

Palabras llave. Imanes permanentes, método de elementos
finitos, modelado, motor sincrono, simulacion.

1. Introduccion

Los motores de imanes permanentes de ca puede
dividirse en dos grandes grupos: los motores brushless dc
(NLDC) que tienen forma de onda de la fuerza
electromotriz trapezoidal y los motores sincronos de
imanes permanentes (MSIP) que tienen forma de onda de
la fuerza electromotriz senoidal.

El interés de los MSIP(s) esta creciendo en un amplio
abanico de aplicaciones. Las razones principales del
incremento de aplicaciones de los MSIP(s) son en primer
lugar, la eficiencia y las bajas pérdidas del rotor y en
segundo lugar, la reduccion del precio de los imanes
(NdFeB).

En términos generales, los MSIP(s) son preferibles a los
motores asincronos, en todas aquellas aplicaciones que
requieran una velocidad constante con arranque suave y
funcionamiento silencioso.

En ingenieria eléctrica, normalmente las maquinas
eléctricas son representadas por un circuito equivalente.
El conocimiento de los diferentes parametros del circuito

equivalente de la maquina, nos permite conocer su
comportamiento, bajo  ciertas  condiciones de
funcionamiento, por aplicacion de las leyes de los
circuitos eléctricos.

El MEF, constituye una herramienta muy importante para
los ingenieros eléctricos, en el analisis del
comportamiento de maquinas eléctricas, al permitir
conocer con un margen de error acotado, los diferentes
parametros de la maquina, asi como su comportamiento
en situaciones extremas de funcionamiento.

En el analisis por elementos finitos de motores sincronos
de imanes permanentes, el primer paso es simular el
comportamiento de la maquina “en reposo” (sin corriente
por los devanados del estator), lo que nos permite
conocer el valor de la “fuerza electromotriz” y estimar el
valor de la corriente por los devanados del estator para la
potencia 1til de la maquina. En el valor de la “fuerza
electromotriz”, influye de una forma notable la
geometria del rotor y el tamafio de los imanes.

La optimizacion de la geometria del rotor es muy
importante, dado que podemos conseguir el mismo par
con distintos valores de la corriente por los devanados del
estator, disminuyendo en consecuencia el precio del
controlador del motor.

En los ultimos afios, se han publicado distintos trabajos
en los que se estudia la influencia de la forma y tamafio
de los imanes (geometria del rotor) en el: a) disefio de
circuitos magnéticos [1], b) estudio de ruidos y
vibraciones de motores [2], y ¢) comportamiento de
motores eléctricos [3] — [6].

En este trabajo se comparan dos motores con distintas
geometrias de rotor e igual estator y comprobamos su
influencia en las caracteristicas principales de Ila
maquina.

De acuerdo con lo anterior, el objetivo del trabajo es
observar como influye el tamafio de los imanes
(modificacion de la geometria del rotor) en las



caracteristicas del motor. La simulacion y el estudio del
comportamiento de la maquina, se realiza utilizando el
MEF..

El método propuesto, puede ser muy util para determinar
formulas precisas, de aplicacion industrial, que permitan
calcular la corriente del estator, par, factor de potencia y
rendimiento de la maquina, cuando se modifica el tamafio
de los imanes.

2. Método

La “fuerza electromotriz en reposo” y por fase, en los
devanados del estator, puede determinarse por medio de
la expresion:

E, = m|2N/K 0 (M

Donde:

E, fuerza electromotriz inducida por el flujo de
excitacion del rotor (sin considerar la reaccion
de inducido);

N namero de espiras en serie por fase del
devanado del estator;

[ frecuencia;

K,, factor de devanado del estator;

¢  flujo maximo.

Considerando la relacion existente entre el flujo y el
vector potencial magnético A.

o= §§Adz )

Para modelos planos en dos dimensiones, la ecuacion (1)
puede ponerse en la forma:

E, =2m2 NfAP 3)

Donde P es la profundidad del modelo (longitud del
paquete de chapas).

Por otra parte, como es conocido, el par electromagnético
de un motor sincrono trifasico de polos salientes puede
determinarse por la ecuacion:

Te:%[Eq1q+(Xd_Xq)ld[q] “)

Donde:

p  numero de pares de polos;
o velocidad angular;

X, reactancia directa;

X, reactancia en cuadratura;
I, intensidad directa;

I, intensidad en cuadratura.

Al primer término de la ecuacion (4), se denomina “par
alineado con los imanes” y al segundo “par de
reluctancia”.

En los motores sincronos de imanes permanentes, con los
imanes montados en la superficie del rotor, las
reactancias directa y en cuadratura pueden admitirse
iguales.

Xy=X,=X, ®

En estas condiciones el par de reluctancia es nulo y la
ecuacion (4) puede escribirse:

3p
T, = ;quq (6)

De acuerdo con lo anterior, la potencia electromagnética
de la maquina puede determinarse por medio de la
expresion:

2nn
P =T W:ﬂ;ql(’ 7

e e

Donde # es la velocidad del motor en rpm.

Finalmente la potencia util se calcula, restando a la
potencia electromagnética, las pérdidas en el hierro y las
pérdidas mecanicas.

Las pérdidas mecanicas se calculan en funcion de la
velocidad del rotor y las pérdidas en el hierro a partir de
la densidad de flujo magnético en los elementos del
modelo de elementos finitos [7].

De la ecuacion (7) observamos que la potencia de un
motor sincrono de imanes permanentes, con los imanes
montados en la superficie, la potencia util depende de la
corriente y la “fuerza electromotriz en reposo”. En
consecuencia para conseguir un determinado valor de
potencia/par de la maquina, puede ser interesante disefiar
maquinas que tengan un alto valor de la “fuerza
electromotriz en reposo”, disminuyendo de esta forma la
corriente por los devanados del estator y en consecuencia
reduciendo, previsiblemente la potencia y, el costo del
dispositivo controlador del motor.

Los factores que influyen en el valor de la “fuerza
electromotriz en reposo” (1), son el niimero de espiras, la
frecuencia y el flujo. La frecuencia viene determinada
por la velocidad de la maquina. A su vez, en el valor del
flujo influye la geometria del estator, la longitud de
entrehierro, la geometria del rotor y, la forma, tamafo y
direccion de imantacion de los imanes.

En este trabajo estudiamos como influye en las
caracteristicas de la maquina, el valor del flujo
(modificando el volumen de los imanes) permaneciendo
constante el nimero de espiras.

Respecto a la forma de los imanes es aconsejable que
tengan la cara interior y, principalmente la exterior de
forma circular (radio similar al del rotor), pero esto
encarece notablemente su precio, por lo que utilizaremos
imanes de seccion rectangular.



3. Motor

Las caracteristicas principales del motor objeto de
estudio son:

Motor trifasico

Tension de entrada del controlador: 400 V
Frecuencia de la tension del controlador: 50 Hz
Frecuencia de la tension del motor: 12.5 Hz
Velocidad nominal (referida a 12.5 Hz): 125 rpm
Numero de imanes permanentes: 12; p =6
Numero de ranuras del estator: 72

Potencia util: 5 kW

Tipo de imanes: NdFeB.

La figura 1 muestra un cuarto de la geometria del motor.

Fig. 1. Motor (rotor A)

Las caracteristicas de par, potencia, rendimiento y factor
de potencia del motor indicado, son comparadas con las
del motor que se obtiene al sustituir el rotor por el
mostrado en al figura 2 (permaneciendo constante la
longitud de entrehierro). El volumen de los imanes se
incrementa en un 66 %, (permaneciendo constante la
altura y longitud de los imanes; el sentido de imantacion
y, el tipo de imanes).

Fig. 2. Motor (rotor B)

La simulacion y estudio del comportamiento de los
motores (rotor A y rotor B), se realizan mediante el
método de elementos finitos utilizando modelos en dos
dimensiones.

4. Modelo

El modelo de elementos finitos esta constituido por una
seccion recta del motor y un espacio de aire que lo rodea.

La figura 3, muestra el mallado utilizado.
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Fig. 3. Malla de elementos finitos (cuarto del modelo)

Las propiedades de los materiales se definen como
sigue:

e Para el aire (entrehierro, comienzo ranuras del
rotor y aire exterior) y el cobre (bobinado del
estator) por medio de la permeabilidad
magnética.



e Para el nlcleo magnético del estator y rotor por
medio de la curva BH, a la frecuencia de trabajo,
del material con el que estdn construidas la
chapas magnéticas.

e Los imanes por medio de su permeabilidad
magnética y campo coercitivo en sus dos
componentes (Hex y Hey).

Las excitaciones se definen por medio de las densidades
de corriente en los devanados del estator.

La condicion de contorno es vector potencial magnético
nulo en la periferia del modelo.

El tipo de analisis realizado es magnetostatico.
5. Analisis

En primer lugar se determina la “fuerza electromotriz”
por fase, inducida en los bobinados del estator por los
imanes (E,), para lo cual se realiza la simulacion del
comportamiento de la maquina “en reposo”.

Una vez realizado el analisis se tiene los mapas de vector
potencial magnético mostrados en la figura 4.
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Fig. 4. Vector potencial magnético “en reposo”

Podemos observar que el vector potencial magnético, se
incrementa de una forma importante en el motor con el
rotor B respecto al motor con el rotor A. El valor de la
“fuerza electromotriz” por fase, calculada por medio de
la ecuacion (3), es 110 V para el primer motor y 224 V
para el segundo motor (incremento del 204 %).

La potencia electromagnética esperada de cada uno de los
motores, para valores de 0 < I; < 20 A, calculada de
acuerdo con la expresion (7), se muestra en la figura 5.
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Fig. 5. Potencia electromagnética

Del grafico anterior, se deduce que para una potencia util
de 5 kW y una vez estimadas las pérdidas mecénicas y en
el hierro, la intensidad esperada es de 15,6 A para el
primer motor y de 7,6 A para el segundo motor
(reduccion en el valor de la corriente del 49 %).

La figura 6, muestra el par electromagnético calculado de
acuerdo con la expresion (6), para valores 0 <I; <20 A.
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Fig. 6. Par electromagnético

En segundo lugar, se ha simulado el comportamiento del
motor (rotor A y B) para valores I3 de 5, 10, 15y 20 A.

Una vez realizados los analisis para los valores de
corriente indicados, se determina la fuerza electromotriz
resultante en carga, por medio de la ecuacion:

Eq =212 NfAz P (8)
Donde Ay es el valor maximo del vector potencial
magnético resultante (debido a los imanes y corriente por

el estator).

La figura 7 muestra la distribucion del vector potencial
magnético, en ambos motores, para 15 A.
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Fig. 7. Vector potencial magnético en carga (I;= 15 A)

El angulo de retraso del rotor respecto del campo
resultante, se determina por medio de la ecuacion:

8y = arcos(l)—q )
Or

Donde ¢r es el flujo resultante (debido a los imanes y
corrientes).

La figura 8 muestra la variacion del angulo de retraso del
rotor respecto del campo magnético resultante, en
funcion de la corriente, para los dos motores analizados.
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Fig. 8. Angulo de retraso del rotor.

La reactancia sincrona, se determina por medio de la
expresion:

X, =X+X_, (10)

Donde:

X reactancia de reaccion de inducido mas la
reactancia de dispersion del paquete de chapas;
X, reactancia de dispersion de cabezas de bobina.

La reactancia de dispersion de cabezas de bobina, puede
calcularse por medio de la expresion [8]:

Xy =41 pny -Z; AL (11)

Donde:

f  frecuencia;

p  numero de pares de polos;

n,r numero de ranuras por fase y polo;
Z, numero de conductores por ranura;
A permeancia por unidad de longitud;
L longitud del inducido.

Finalmente el factor de potencia se determina por la
ecuacion:

Eq +R[q
coscp=7U (12)

La figura 9 muestra la variacion del factor de potencia, en

funciéon de la corriente, para cada uno de los motores
estudiados.
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Fig. 9. Factor de potencia

Podemos observar que para la potencia deseada, el factor
de potencia es 0,82 (muy bajo) para el primer motor
(rotor A) y de 0,93 para el segundo motor (rotor B).

La tension de alimentacion por fase, es de 180 V para el
primer motor y de 270 V para el segundo.

De acuerdo con lo indicado anteriormente podemos
afirmar que para el mismo valor de potencia (5 kW), la
intensidad esperada por los bobinados del estator en el
motor con el rotor B es un 49,7 % menor que en el motor
con el rotor B, mientras que el factor de potencia con el
rotor B es un 13,5 % superior que con el rotor A.



6. Conclusiones

En este trabajo se ha simulado el comportamiento de un
motor sincrono de imanes permanentes, observando
como se modifican las caracteristicas del motor al
modificar el tamaio de los imanes.

Hemos verificado que en el prototipo inicial y para una
potencia de 5 kW, el factor de potencia es muy bajo y la
tension de alimentacion es inferior a los 400V.

Al incrementar el volumen de los imanes en un 66 %
respecto de su tamafio en el prototipo inicial, la corriente
del estator se reduce para la misma potencia en un 49 %.

El método expuesto en este trabajo puede ser muy util
para determinar formulas fiables al calculo de la corriente
del estator, factor de potencia y rendimiento de la
maquina, cuando se modifica el tamafio de los imanes, la
longitud de entrehierro o el nimero de espiras.
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Resumen. En este trabajo, se presenta un método de
aproximacion practica para la determinacion de la reactancia de
dispersion de cabezas de bobina, aplicado a un motor sincrono
de imanes permanentes (MSIP). El analisis del comportamiento
del motor se realiza utilizando el método de elementos finitos
(MEF) mediante modelos en tres dimensiones (3D). El flujo de
cabezas de bobina puede ser calculado mediante modelos en
dos dimensiones (2D), pero es necesario resolver un gran
nimero de modelos. En el trabajo se describe un método para
calcular la reactancia de dispersion de cabezas de bobina
comparando la energia calculada en un modelo en 3D completo
(incluye a las cabezas de bobina), con la energia calculada en
un modelo en 3D sin cabezas de bobina y, con la energia
calculada en un modelo en 2D. El método propuesto puede
utilizarse para determinar ecuaciones de uso industrial aplicadas
al calculo de la reactancia de dispersion de cabezas de bobina.
Los resultados obtenidos indican que los valores de las
reactancias de dispersion de las cabezas de bobina son algo
mayores que los obtenidos por un calculo analitico.

Palabras llave. Imanes permanentes, método de elementos
finitos, modelado, motor sincrono, reactancia de cabezas de
bobina, simulacion.

1. Introduccion

El gran desarrollo de las aleaciones de alto magnetismo
ha hecho posible que los motores de imanes permanentes
(MIP) sean hoy dia una alternativa muy interesante.

En los ultimos afios se han desarrollado varias familias de
imanes permanentes, con propiedades magnéticas y
fisicas muy destacables. Los tipos de imanes permanentes
mas utilizados en la actualidad para el caso de maquinas
eléctricas, son los imanes de tierras raras de Neodimio
Hierro Boro (NdFeB).

Los MIP de corriente alterna son semejantes a los
motores sincronos convencionales en los que el devanado
de campo giratorio se sustituye por imanes permanentes.
Si la forma de la onda de la tension inducida es senoidal
se denominan “motores sincronos de imanes
permanentes” (MSIP), cuando la forma de la onda es
trapezoidal son conocidos como ‘“motores cc sin

escobillas o brushless dc” [1], esta terminologia es debida
a la semejanza con las caracteristicas de los motores de
corriente continua.

El interés de los MSIP(s) esta creciendo en un amplio
abanico de aplicaciones. Las razones principales de este
incremento son en primer lugar la eficiencia y en
segundo lugar la reduccion del precio de los imanes
(NdFeB).

En términos generales, los MSIP(s) son preferibles a los
motores asincronos, en todas aquellas aplicaciones que
requieran una velocidad constante, arranque suave y
funcionamiento silencioso.

El MEF es un procedimiento de analisis matematico que
aproxima los valores de las magnitudes fisicas, que
pueden describirse con ecuaciones diferenciales validas
en una determinada region. Inicialmente se aplico sobre
todo al analisis mecanico, pero desde hace unas décadas
se viene utilizando con éxito en el area de ingenieria
eléctrica, y particularmente en el estudio de maquinas
eléctricas rotativas.

El uso del MEF como herramienta de calculo y
simulacion durante el proceso de disefio de un motor
eléctrico, permite por una parte, conocer Ssu
comportamiento y, por otra, modelarlo por medio de un
circuito equivalente.

En ingenieria eléctrica, normalmente las maquinas
eléctricas son representadas por un circuito equivalente.
El conocimiento de los diferentes parametros del circuito
equivalente de la maquina, nos permite conocer su
comportamiento, bajo  ciertas  condiciones de
funcionamiento, por aplicacion de las leyes de los
circuitos eléctricos.

Un parametro importante del circuito equivalente de un
MSIP es la reactancia sincrona. Como es conocido, dicha
reactancia es la suma de la reactancia de reaccion de
inducido, la reactancia de dispersion del nucleo y la
reactancia de dispersion de cabezas de bobina



La reactancia de reaccion de inducido y la reactancia de
dispersion del ntcleo pueden calcularse simulando el
comportamiento del motor mediante modelos en 2D (en
vacio y en carga)

Considerando que en las zonas de cabezas de bobina, el
flujo magnético se canaliza principalmente por el aire,
armadura y carcasa del motor y que las cabezas de bobina
estan formadas por una parte recta y otra circular
concéntrica con el eje, la reactancia de cabezas de bobina
se podria calcular por medio de modelos en 2D. Primero
se analiza la parte recta de las cabezas con un modelo
plano 2D y posteriormente los tramos circulares mediante
modelos 2D axisimétricos. Este método de analisis
necesita simular un gran nimero de modelos 2D
axisimétricos porque en cada tramo circular el nimero de
conductores y corrientes es diferente.

El desarrollo de los paquetes informaticos de elementos
finitos y la mayor potencia de los actuales ordenadores
personales, permiten resolver sistemas con mayor
numero de ecuaciones y mas rapidamente que hace unos
pocos afios. Con la técnica de modelado sélido en 3D, se
pueden resolver geometrias complejas.

El objetivo fundamental de este trabajo es determinar las
reactancias de dispersion de cabezas de bobina, de un
motor sincrono de imanes permanentes. La simulacion y
estudio del comportamiento del motor se realiza
mediante el MEF utilizando modelos sélidos en 3D.

La mayoria de los estudios realizados utilizando el MEF
para la simulacion y analisis del comportamiento de las
maquinas eléctricas en general y, de los MSIP(s) en
particular, son en dos dimensiones, siendo relativamente
pocos los realizados en tres dimensiones. Entre las
publicaciones de estos ultimos afios podemos citar el
trabajo de Demenko [2], que calcula las inductancias de
cabezas de bobina de un motor de imanes permanentes
utilizando el método del “elemento lado”, mediante
simulaciones en 2D y 3D y el trabajo de Engstrom [3],
que examina el efecto de la dispersion en maquinas de
imanes permanentes con especial atencion a la
produccion del par, para el caso de maquinas sin ranuras,
comparando los resultados obtenidos en simulaciones
mediante modelos en 3D y en 2D.

El método propuesto, se basa en comparar la energia
obtenida para un modelo completo en 3D (incluye las
cabezas de bobina), con la energia calculada, por una
parte, para un modelo sin cabezas de bobina en 3D y, por
otra, para un modelo en 2D. Los resultados de Ia
reactancia de cabezas de bobina calculados a partir de las
energias anteriormente citadas, se compraran con el valor
determinado a partir de la energia para un modelo en 3D,
donde so6lo se simula el comportamiento de las cabezas
de bobina, y también con el valor obtenido por un calculo
analitico.

El método presentado en este trabajo, puede ser muy util
para determinar férmulas precisas, de aplicacion
industrial, al céalculo de la reactancia de cabezas de

bobina, en funcion de la geometria de las cabezas de
bobina.

2. Descripcion del motor

Las caracteristicas principales del motor objeto de
estudio son:

Motor trifasico

Tension de alimentacion del controlador: 400 V
Frecuencia de la tension del controlador: 50 Hz
Frecuencia de la tension del motor: 12.5 Hz
Velocidad nominal (referida a 12.5 Hz): 125 rpm
Numero de imanes permanentes: 12; p =6
Numero de ranuras del estator: 72

Potencia util: 5 kW

e Tipo de imanes; NdFeB.

La figura 1 muestra un cuarto de la geometria del motor.

Fig. 1. Motor

3. Modelos

Se utilizan dos tipos de modelos de elementos finitos, en
3Dyen2D.

A. Modelos en 3D

Dada las simetrias existentes, los modelos estan
constituidos por 120° de la mitad del motor y un espacio
de aire rodeando a las cabezas de bobina.

Se utilizan tres modelos: completo, sin cabezas de bobina
y solo cabezas de bobina.

En las figuras 2, 3 y 4, se muestran respectivamente los
tres modelos citados.



Fig. 2. Modelo completo

Fig. 3. Modelo sin cabezas de bobina

Fig. 4. Modelo solo cabezas de bobina

El mallado se ha realizado con elementos tetraedros de 4
nodos, prestando especial atencion a las zonas criticas
(entrehierro y zonas proximas). En la figura 5 se
muestra, a modo de ejemplo, el mallado utilizado para el
modelo completo.
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Fig. 5. Malla de elementos finitos en 3D

Las propiedades de los materiales se definen como
sigue:

e Para el aire (entrehierro, comienzo ranuras del
rotor y aire exterior) y el cobre (bobinado del
estator) por medio de la permeabilidad
magnética.

e Para el nlicleo magnético del estator y rotor por
medio de la curva BH, a la frecuencia de trabajo,
del material con el que estan construidas las
chapas magnéticas.

e Los imanes por medio de su permeabilidad
magnética y campo coercitivo en sus dos
componentes (Hcx v Hey)-

Las excitaciones se definen por medio de la corriente en
cada uno de los devanados del estator.

La condicién de contorno es flujo tangencial en el
exterior del motor.

B. Modelo en 2D

El modelo de elementos finitos esta constituido por una
seccion recta transversal del motor y un espacio de aire
que lo rodea.

Las excitaciones se definen por medio de las densidades
de corriente en los devanados del estator.

Las propiedades de los materiales se definen igual que en
el modelo en 3D.



La condicion de contorno es vector potencial magnético
nulo en la periferia del modelo.

La figura 6, muestra el mallado utilizado.
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Fig. 6. Malla de elementos finitos en 2D (cuarto del modelo)

4. Metodologia y analisis

Los pasos seguidos en el estudio que se presenta en este
trabajo, son los siguientes:

1) Simular el comportamiento del motor mediante
los cuatro modelos descritos anteriormente
(completo en 3D, sin cabezas de bobina en 3D,
sin cabezas en 2D y sélo cabezas de bobina en
3D). Calculo de la energia magnética de cada
uno de los modelos.

2) Determinar la energia de dispersion de las
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Fig. 7. Modelo completo en 3D

Fig. 8. Modelo en 2D

cabezas de bobina por medio de las energias
obtenidas en los distintos modelos.

La energia de cabezas de bobina, teniendo en cuenta que
los modelos en 3D analizados representan 1/6 del motor,
se calcula con las siguientes ecuaciones:

3) Calcular la reactancia de dispersion de cabezas
de bobina a partir de las energias de dispersion
de las cabezas obtenidas en el paso anterior.

4) Determinar la reactancia de dispersion de
cabezas de bobina por un método analitico.

5) Comparar los resultados.
A. Método de elementos finitos

En todos los modelos, el analisis del comportamiento del
motor se ha realizado para la situacion correspondiente al
funcionamiento de plena carga y considerando corriente
por el estator transversal.

La figuras 7 y 8 muestran respectivamente  la
distribucion de la densidad de flujo magnético obtenida
en la simulacion del modelo completo en 3D, y en el
modelo sin cabezas de bobina 2D.

ch] = 6(Wc3D - WnSD) (l)
Wepy =6Wesp =W,op - P (2)
Weps =6Wsp (3)
Donde:
W.,; energia de cabezas de bobina calculada por el
primer procedimiento;
W.,, energia de cabezas de bobina calculada por el
segundo procedimiento;
W.,; energia de cabezas de bobina calculada por el
tercer procedimiento;
W.;p energia calculada en el modelo completo en
3D;
W.sp energia calculada en el modelo sin cabezas en
3D;
W.op energia calculada en el modelo en 2D;



P Profundidad del modelo (longitud del paquete
de chapas).

Wysp energia calculada en el modelo en 3D de solo
cabezas de bobina.

La reactancia de dispersion por fase de las cabezas de
bobina, se determina por medio de la siguiente expresion:

XC
Y

4)
Donde:

f  frecuencia;
I Corriente por fase.

B. Meétodo analitico

Con el propdsito de comparar los resultados obtenidos
por el método propuesto, se ha calculado la reactancia de
dispersion de las cabezas de bobina utilizando un calculo
analitico [4].

Para ello, primeramente se determina la permeancia por
unidad de longitud de las cabezas de bobina a partir de
ecuacion:

b= 47107 I’lpf(o, 6 LLC}’ —03% L””] (5)

Donde:

Aep permeancia por unidad de longitud;

npe  numero de ranuras por polo y fase

L, longitud media de una cabeza de bobina;
L longitud del inducido;

yn paso de bobina en ranuras;

tm paso medio de ranura;

La reactancia de cabezas de bobina, puede calcularse por
medio de la expresion:

Xy =4nf-pn, 2] Ay-L (6)
Donde:

p  namero de pares de polos;
Z, mnumero de conductores por ranura;

5. Resultados

Una vez realizados los analisis para los distintos
modelos, se tienen los resultados mostrados en la tabla I

TABLA I.- Energia magnética de los modelos

Modelo Energia (J)
Completo en 3D (W p) 85,2798
Sin cabezas en 3D (W3p) 85,1338

Sin cabezas en 2D (W ,p) 2025,2342
Solo cabezas de bobina en 3D (Wsp) | 0,042776

La tabla II muestra la energia de dispersion de cabezas de
bobina calculada por cada uno de los procedimientos
previamente descritos (1), (2), (3).

TABLA II.- Energia de cabezas de bobina

Procedimiento En(ejr)gla
1) Modelo completo y sin cabezas de bobina (W) | 0,8762
2) Modelo completo y en 2D (W) 5,3704
3) Modelo solo cabezas (Wy;3) 0,2566

Finalmente, la tabla III muestra el valor de la reactancia
de dispersion de cabezas, calculada por medio de la
energia (4) y la calculada por el método analitico (6).

TABLA III.- Reactancia de dispersion de cabezas de bobina

Procedimiento X ()
1) Modelo completo y sin cabezas de bobina (1) y (4) | 0,569
2) Modelo completo y en 2D (2) y (4) 3,487
3) Modelo sdlo cabezas (3) y (4) 0,166
4) Célculo analitico (6) 0,439

De los resultados obtenidos podemos indicar que:

1) El primer procedimiento de célculo, ofrece un
valor superior (30%) al calculado por el método
analitico. Dado que no se pudo contrastar los
resultados experimentalmente no podemos afirmar
cual de estos valores es la mejor aproximacion.

2) Con el segundo procedimiento se obtienen valores
muy altos, por lo que no parece apropiado. La
causa puede ser como consecuencia de comparar
dos modelos con formas y tamafos de elementos
muy distintas.

3) El valor obtenido con los resultados de la
simulacién del modelo que solamente recoge las
cabezas de bobina, es muy pequefio, ya que no
tiene en cuenta que parte del flujo de dispersion de
las cabezas se cierra a través del ntcleo. De lo que
se deduce que este tercer procedimiento, a pesar de
que seria el mas sencillo de aplicar y tener un
tiempo de resolucion menor, tampoco seria valido
al cometer importantes errores.

6. Conclusiones

En este trabajo se ha simulado el comportamiento de un
MSIP mediante un modelo de elementos finitos en 3D.

Se han propuesto distintos procedimientos para el calculo
de la reactancia de dispersion de cabezas de bobina.

El procedimiento mas adecuado es el primero,
obteniendo la reactancia de cabezas de bobina a partir del
modelo completo y el modelo sin cabezas de bobina en
3D.

El calculo de la reactancia de dispersion de cabezas de
bobina a partir del modelo de s6lo cabezas de bobina, no
es adecuado dado que conduce a errores importantes.

El método puede ser 1til para determinar formulas
precisas que permitan calcular la reactancia de dispersion
de cabezas de bobina en funcion de la forma del
bobinado.
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Abstracte

Aquest treball estudia la determinacié de les caracteristiques en regim permanent d’un
motor sincron amb imants permanents superficials, mitjancant el métode dels elements
finits (FEM). Primerament, es presenta la distribucié del camp magnétic del motor
sincron d’imants permanents (PMSM) en estudi, treballant en buit i en condicions
nominals. A partir del calcul de I’energia magnética emmagatzemada es calculen les
inductancies als eixos directe i en quadratura. Finalment, es representen graficament el
parell electromagnétic i el parell de “cogging” del motor respecte I’angle de carrega.
Quan es comparen els resultats calculats respecte als obtinguts experimentalment, es
demostra que aquest métode de calcul es fiable.

1. Introduccio

El motor trifasic d’alterna d’imants permanents, funcionant com un motor sincron
convencional, ha tingut un interes creixent en les darreres dues décades. El recent
desenvolupament d’imants d’alta energia, ha ampliat significativament els seus camps
d’aplicacid. La inserci6 d’imants permanents de SmCo o NdFeB al rotor dels motors
sincrons per crear I’excitacio, ha suposat innovacions en el disseny i analisis dels PMSM.
En aquest treball, es determinen i analitzen els parametres i les caracteristiques d’un
motor sincron d’imants permanents superficials.

Aixi doncs, la tasca principal és determinar amb la maxima precisio les caracteristiques
en regim permanent del PMSM, i per aix0 s’han de calcular els seus parametres de la
manera mes exacta possible, mitjangant el métode dels elements finits.

El programa utilitzat per realitzar I’analisi d’elements finits (FEA) és el FEMM 3.4 del
Dr. David Meeker. Aquest és un software de lliure distribucio i es pot trobar a la pagina
web: http://femm.foster-miller.net.

2. Motor sincron d’imants permanents

El PMSM estudiat és un motor comercial tipus 142UMC30 de Control Techniques, les
seves caracteristiques es presenten a les Taules I i Il. El motor s’alimenta a partir de tres
corrents sinusoidals i al rotor es troben sis pols d’imants permanents de NdFeB muntats
superficialment. A la Fig. 1 es pot veure una vista alcada d’aquest motor instal-lat en una
bancada experimental.



Taula I: Especificacions constructives del PMSM

Inércia 0,00205 kg:m*
Longitud del rotor 92,5 mm
Ranures al estator 18
Conductors per ranura 40
Material magnétic NdFeB
Remanenc¢a magnetica 123T
Coercivitat magnetica 915 kA/m

Taula I1: Especificacions electriques del PMSM

Tipus de connexio Estrella
Numero de pols 6
Potencia nominal 3,83 kW
Constant de voltatge (Ke) 0,098 VV(rms)/rpm
Constant de parell (Kt) 1,6 N-m/A(rms)
Corrent nominal 7,625 A(rms)
Velocitat nominal 3000 rpm
Parell nominal 12,2 N-m

Fig. 1. Vista alcada del PMSM Control Techniques 142UMC30



Fig. 2. Seccid transversal del PMSM Control Techniques 142UMC30

3. Calcul del PMSM amb el metode d’elements finits

El metode d’elements finits s’ha utilitzat extensivament en el calcul numeric del camp
magnetic de maquines eléctriques en general. La possibilitat de calcular les
caracteristiques electromagnétiques i electromecaniques a partir dels resultats obtinguts,
justifica la utilitzacié de I’analisi d’elements finits. Molts investigadors d’arreu del mon
treballen en aquest camp i han publicat molts papers amb aquest topic. Existeixen molts
paquets de software per realitzar el FEA, alguns son generals i altres estan més orientats a
maquines eléctriques. Els resultats presentats en aquest treball han estat obtinguts
utilitzant el programa FEMM.

En el primer pas, considerat com etapa de preproces, es dibuixa la seccio transversal del
PMSM i es defineix la malla d’elements finits amb una densitat apropiada. Normalment,
la mida dels triangles de la malla es deixa escollir automaticament pel programa, encara
que en alguns casos ens interessa seleccionar manualment una mida més petita per
obtenir uns resultats més acurats, com en el cas de I’entreferro de la maquina. En el FEA
realitzat per obtenir la distribucié del camp magneétic, la malla esta formada per 32482
nodes i 64808 elements, distribuits per tota la seccid transversal del PMSM, com es pot
veure a la Fig. 3.

En el preprocessador, anomenat femm editor, s’introdueixen totes les dades requerides
per realitzar I’analisi: la seccid transversal exacta del nucli magnetic de I’estator i del
rotor, els materials del PMSM (imants permanents, coure, aire, acer) i les seves
caracteristiques (corba de magnetitzacid, permeabilitat magnetica, coercivitat magnética,
conductivitat eléectrica), les condicions de contorn de la regid a analitzar i el corrent que
circula pels bobinats de la maquina. Com s’ha dibuixat la seccio transversal complerta del
motor, només s’aplica la condicié de contorn de primer ordre de Dirichlet (A=0) al cercle
més extern de I’estator.

Una vegada acabada I’etapa de preprocés, el model del PMSM es troba a punt per ser
analitzat. La soluci6 del problema s’aconsegueix executant el “solver” del FEMM, aixi



s’obtenen els valors del potencial vector magnétic a cada node. Després es poden fer
servir aquests resultats per diferents proposits. Mitjancant el postprocessador del FEMM,
anomenat femm viewer, €s possible realitzar els calculs i les representacions grafiques de
les variables electromagnétiques i electromecaniques més importants.

A. Distribucio del camp magnetic

Una de les millors maneres d’entendre el funcionament de qualsevol motor es veure la
distribucié del seu camp magneétic. La representacio grafica dels resultats obtinguts
mitjancant FEM, ens proporciona la distribucié del flux magnétic a la secci6 transversal
del motor sincron d’imants permanents estudiat. Una part dels resultats més interessants
es presenten a continuacio.

La distribucio del camp magnetic al PMSM es presenta a la Fig. 3, pels dos seguents
regims: (a) treballant en buit, és a dir, corrent d’armadura cero, per tant el camp magnétic
obtingut és el que prové unicament dels imants; (b) treballant en condicions nominals, és
a dir, parell nominal (Ty = 12,2 N-m) amb corrent nominal als bobinats de I’estator (Iy =
7,625 A).

(@) En buit (b) En condicions nominals

Fig. 3. Representacio del flux magnétic a la seccio transversal del PMSM

El postprocessador del FEMM també ens permet dibuixar la distribucié espacial de la
densitat de flux magnetic al llarg d’una linia escollida. A la Fig. 4. es representa la seva
distribucié al llarg de 120° mecanics (360° electrics) d’entreferro.



Densitat de flux magnetic [T]
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(@) En buit (b) En condicions nominals
Fig. 4. Representacio del flux magnétic a la seccio transversal del PMSM

Mitjangant aquests diagrames es poden analitzar en profunditat les propietats del camp
magnetic a I’entreferro de la maquina, tenint en compte la seva intensitat i forma. A la
Fig. 4b es pot apreciar I’efecte de la reaccio d’armadura, quan el motor sincron d’imants
permanents treballa amb carrega. A les figures també es pot apreciar I’efecte de les dents
de I’estator sobre la distribucio del camp magnétic.

B. Calcul de les inductancies

Es molt important calcular el més acuradament possible els valors dels parametres del
PMSM. Els més significatius son les inductancies en I’eix directe (L) i en I’eix en
quadratura (L,), ja que d’elles depenen les reactancies sincrones (X i X;). Aquests son els
parametres més importants per analitzar la performance en régim permanent i/o dinamic
del PMSM.

El calcul numéric de les inductancies es basa en els resultats obtinguts amb FEM i és fa
per separat pels eixos directe i en quadratura. EI camp no ha d’estar excitat, aixo suposa
que els imants permanents s’han de substituir per elements finits associats a la seva
corresponen permeabilitat relativa (« = 1.048), pero sense coercivitat magnética (H. = 0).
Només els bobinats del estator han d’estar excitats d’una manera apropiada, com
s’explica en els seguents paragrafs.

1) Eix d: Quan es calcula la inductancia en I’eix directe L, els corrents estatorics han
d’estar distribuits per tenir el seu maxim a I’eix en quadratura, produint el maxim de
camp d’armadura a I’eix directe. La distribucio del camp magneétic es presenta a la Fig. 5.



Fig. 5. Distribucio del camp magnetic pel calcul de L,

2) Eix g: La inductancia en I’eix en quadratura L, es calcula d’una manera similar a L.
En aquest cas, el camp d’armadura es desplaca 90° eléctrics, produint el seu maxim a
I’eix en quadratura. Aix0 suposa que el maxim dels corrents estatorics tenen el seu
maxim a I’eix directe. La distribucié del camp magnétic en aquest cas es presenta a la
Fig. 6.

Fig. 6. Distribucio del camp magnetic pel calcul de Z,

Les inductancies es calculen a partir de I’energia magneética a I’entreferro i el corrent
estatoric, mitjangant la seglient formula:

L:W

3 (1)
2

Com que s’assumeix que els bobinats ficticis dels eixos directe i en quadratura tenen el
mateix numero de voltes que el bobinat real per fase, per una maquina trifasica d’alterna,



el corrent estatoric en els eixos directe i en quadratura ha de ser 3/2 vegades més gran que
el corrent estatoric per fase, per produir la mateixa forca electromotriu.

La corresponent energia magnética W a I’entreferro, s’obté en cada cas a partir dels
resultats de I’analisi d’elements finits del PMSM, d’acord amb la Fig. 5 i la Fig. 6. Els
resultats finals son:

L, = 3W - 30'377 _aRmH ()
2 2.7,625°
2
Lq=3W =3°’449 _515mH  (3)
ey E-7,6252

4. Determinacio dels parametres del PMSM

El model en dos eixos de les maquines sincrones és | aproximacié més classica per
analitzar i investigar el seu comportament. Molts investigadors utilitzen aquest métode
com a primera aproximacio, per després realitzar un analisi més detallat i en profunditat
de la maquina. La idea basica és desenvolupar i utilitzar una serie d’equacions que
descriguin el comportament del motor als eixos d i ¢g. L Unic requeriment és disposar dels
seus parametres. La precisio de les caracteristiques de funcionament del PMSM
obtingudes utilitzant aquest metode, depén de manera directa de I’exactitud en el calcul
dels parametres del motor.

Alguns dels parametres del motor els dona el fabricant a la fulla de caracteristiques, pero
molt sovint els seus valors son desconeguts. Per tant, normalment s’ha de buscar la millor
opcio per poder calcular-los mitjancant métodes numerics, analitics o experimentals.

En aquest treball les inductancies principals del PMSM, s’han calculat aplicant

procediments numerics. A partir dels resultats obtinguts a les equacions (2) i (3), es
poden calcular les reactancies X, i X, del PMSM treballant a 50 Hz.

Xy=2-n-f-Ly=2-1-50-4,32-10"° =1,357Q 4)
Xy=2-m-f-L;=2-n-50-515-10"° =1,618Q (5)
El fet de que en un motor sincron d’imants permanents superficials, no hi ha gaire
diferencia entre les reactancies als eixos directe i en quadratura, es demostra en aquest

Cas.

Les reactancies principals també s’han obtingut mitjancant assaig. Els resultats son els
seguents:



Xy=2-n-f-Ly=2-1-50-4,35-10"° =1,366 Q (6)
Xq=2-m-f-L,=2-7-50-590-10° =1853Q 7

Comparant els resultats calculats (4) (5) i els experimentals (6) (7), podem observar que
la discrepancia és minima.

5. Caracteristiques del PMSM en regim permanent

En el sector de I’enginyeria de maquines eléctriques, I’objectiu d’investigadors i
constructors, esta sempre centrat en estimar, analitzar i avaluar el comportament de la
maquina. Per tal proposit, es necessita disposar d’unes caracteristiques de funcionament,
el més acurades possible.

En aquest apartat, el PMSM s’analitza per diferents condicions de funcionament i es
presenten les caracteristiques de parell electromagnétic i parell de “cogging”.

A. Parell electromagnetic

El coneixement de la caracteristica de parell estatic és molt important per poder realitzar
I’analisi i I’avaluaci6 del comportament dels motor eléctrics. Per calcular-la es poden fer
servir diferents aproximacions. En teoria, el parell es calcula a partir de la soluci6 del
camp magneétic de diferents formes. Tres aproximacions s’utilitzen habitualment: el
metode de flux-corrent, el metode del tensor de Maxwell i el metode de treball virtual.

En aquest treball, s’ha utilitzat el méetode del tensor de forca per calcular el parell
electromagnetic al voltant de I’entreferro, mitjancant el post-processador del FEMM. Per
obtenir la caracteristica de parell complerta, s’ha anat desplacant el fasor espacial de
corrent estatoric de 0° a 180° electrics, en increments de 3° electrics, mantenint I’eix
directe del rotor alineat amb I’eix de la fase 4 de I’estator. Aquest calcul ha estat realitzat
pel corrent nominal de la maquina i per tant la caracteristica que es mostra a la Fig. 7, és
la nominal.

Parell electromagnetic [Mm]

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 GO 70 80 90 100110120 130140 150 160 170 180
Posicio del fasor espacial de corrent estatoric [* elec]

Fig. 7. Caracteristica nominal de parell electromagnétic del PMSM



A partir de la grafica de la Fig. 7 i sabent el parell nominal (7y = 12,2 N-m), es pot
obtenir I’angle de carrega nominal (dy = 57° elec) del motor.

B. Parell de “cogging”

Es pot obtenir el parell de “cogging” anul-lant el corrent d’armadura i fent girar el rotor,
utilitzant el mateix metode de calcul de I’apartat anterior. En aquest cas, s’ha seleccionat
I’eix de la fase 4 de I’estator com a eix de referencia, la posicid inicial és quan I’eix 4 de
I’estator i I’eix d del rotor es troben en fase, i per tant el parell de “cogging” és cero.

Per obtenir una bona caracteristica, s’ha anat girant el rotor en increments de 0,1°
mecanics, de 0° a 20° mecanics, és a dir, d’una ranura a una altra. El parell maxim de
“cogging” obtingut és 2,3 N-m aproximadament i la seva forma és fonamentalment
sinusoidal, com es pot observar a la Fig. 8.

T T

Parell de "cogging" [Mm]
o

I A A P
708 9101112131415 1617 18 19 20
Posicio del rotor [* mec]

Fig. 8. Parell de “cogging” del PMSM
Conclusions

L’ analisi d’elements finits és una de les millors solucions per avaluar el comportament de
maquines eléctriques en general. L aproximacio presentada, aplicada a un motor sincron
d’imants permanents superficials, demostra aquesta afirmacid. En aquest cas, els
elements constructius fora del nucli magnetic, no son de gran influencia. Per tant, les
caracteristiques en regim permanent calculades a partir del metode dels elements finits,
en dos dimensions, tenen suficient precisio.

Els resultats calculats i experimentals son la millor manera de confirmar els parametres i
les caracteristiques obtingudes. La concordanga entre ells, presentada en aquest treball,
proba que la metodologia utilitzada és correcte i fiable.
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Abstract. This paper presents the description of the design
and solution given as magnetic screen for a 50Hz industrial
application, combining different materials to obtain the
optimum reduction of the field. Important ideas are presented
on the magnetic field behaviour, the response of the different
materials subjected to magnetic fields, the effects and variations
(in the shape and intensity of the field), introduced by the
screen, and also, the differences in these influences produced by
the screen as a function of their material properties, dimensions
or positions. Keeping the magnetic field within a certain region
of the space without disturbing the field in the other regions is
not an easy task. That is why simulation and real measurements
have to be combined. With the digital model, a large number of
simulations are carried out modifying the screen step by step to
obtain the optimal field reduction. The final measurements have
validated the improvements performed by the screen.

Keywords
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1. Introduction

During the last years, electromagnetic fields have been a
permanent point of conflict due to the growing awareness
of the health risks by the general public. Although lots of
biomedical studies have been carried out on this domain,
none of them has been able to establish a clear relation
confirming electromagnetic fields as a cause of any kind
of illness. However, it is clear there has to be limits in
order to control possible exposures. European authorities
have regulated these aspects fixing limits for the radiated
emissions produced by different kind of electromagnetic
sources [1]. These limits vary as a function of the
frequency and, for the case of the industrial applications
(50Hz) they are:

e For occupational exposure: 500uT
e  For general public exposure: 100 uT

The application introduced in this paper deals with the
magnetic screening performed in an industrial process
trying to reduce the magnetic field emitted by one of the
components below the established limits.

2. Problem description

Placed in an industrial environment, as a part of the
productive process, an industrial coil is used to
demagnetize the workpieces being fabricated which
could keep a remanent magnetic fields on its inside as a
result of the productive process manipulation and
transformation. These fields existing in the workpieces
are not useful at all, resulting even damaging for the
correct functioning of the pieces once they are installed
and have to start working. Therefore, they have to be
eliminated.

Figure 1 - Coil with workpiece and magnetic flux lines.



Demagnetization is the reduction of a magnetic field
from its maximum magnetization intensity to almost
zero, achieved by a repeated polarity reversal at a given
frequency.

For demagnetization, the amplitude of an applied
alternating field must be continuously reduced as shown
in figure 2. The initial demagnetization field strength
must be at least equal to the magnetization field strength
existing in the sample. The reduction of field strength
within the workpiece can be achieved electrically by
reducing the magnetic field progressively while it
circulates through the coil, or mechanically by slowly
withdrawing the workpiece from the field of a constantly
energized demagnetization coil. The figure below can
give an idea of the procedure.

Decremeant = e - function Demagnetization coil
Workpiece

—_—
Movement direction
of the workpiece

')
50 Hz

Figure 2 - Demagnetization process.

The dimensions of the coil which has been shielded are:
e Length = 300mm.
e Internal diameter = 450mm.
e External diameter = 500mm.

The coil is connected to the low voltage electric network
with a 400V supply establishing a value for the field
strength on its centre around 10kA/m. The elevated field
strength implies the existence of high field levels not
only in the centre of the coil but in all the surroundings.
These levels are to be checked and reduced in those
zones considered necessary. This will be done through
the installation of a magnetic screen which has as main
requirement, apart form shielding the magnetic flux in
the outside, not to alter the field strength in the centre of
the coil since it could damage the functioning of the caoil,
therefore preventing the goal it has in the industrial
process, which is, the removal of remanent magnetic field
inside the workpieces.

3. Procedure

A. Initial measurements.

These measurements allow determining the initial
situation under normal conditions, in situ. For the
registration of the magnetic field values a total number of
13 points were controlled. The representation of the
magnetic field in these points could give an idea of the
shape and aspect of the field. The scheme of
measurements is displayed in figure 3. All the
measurements were submitted at the coil’s axe height,
since they were included like that in the same plane, and
the one where the values of magnetic field are maximum
referred to the centre of the coil.

i Demagnetization coil
i Stem Stcm S0cm
-+ >
b | 2 3 4
l =
S
Advance il
direction =
of the = I 2 6 7 8
workpieces| i 35
y
: 9 10 11
=
¥ =
v
b4 y
12 13

Figure 3 - Map of measurements around the coil.

The values registered are (values of magnetic field
density in puT and position in meters being the (0,0)
reference point the centre of the coil):

Foitt 1 2 3 4 5 f
Position X 0.s 1 1.5 2 0.5 1
Position ¥ 1] 1] 1] 1] 0.5 -0
Field (B Ta3 85 30 13 456 92
Point 7 2 9 10 11 12 13

FosiionZ | 1.5 | 2 | 0.5 1 15|05 1

Fosiion ¥ | -0.3 | 0.5 -1 S S e R

Field (B} 26 | 11 | 127 | 46 | 18 | 38 | 24
Table 1 - Values of magnetic field density without screen.

These initial measurements made it possible to
characterize the field created by the coil. Once this field
was known, a digital model was established. The
magnetic field created by this model has the aspect
depicted in figure 4 and was developed to correspond
exactly with that created by the real coil. This was
obtained by the comparison of magnetic field values in
the 13 points controlled in situ and the field simulated by
the model in those 13 points.

Figure 4 - SD View of the dig-ifal mbdel with the magneti-c field
flux lines generated by the coil.

The values of magnetic field are useful not only to
develop the model but also to have an idea of the initial
situation. With this knowledge it is easier to project the
type of screen which is going to be necessary in order to
fix the magnetic field in the surroundings under the
limits.



B. Design of the screen.

In view of the magnetic behaviour of the different
materials ([3]-[4]) iron and aluminium were selected as
the optimal materials to employ in the construction of the
screen. Another important decision to take was the
thickness of the plates to install [5], from ([2],[6]), 2mm
were selected for both aluminium and iron, trying with
this size to optimize the field reduction and the structure
weight. Apart from that, the shape for the screen as well
as the position had to be chosen, other studies ([2],[7])
helped to decide it should be placed as close to the coil as
possible, trying to enclose it inside the screen. There
were space limitations due to the industrial environment
where the demagnetizing coil was place, though the
width of the screen could not be large.

The first option was to introduce 2 iron plates, one on
each side of the coil, to analyze the absorption level of
magnetic field they were able to perform. The election of
iron located on the sides of the coil where the field is
parallel to the surface of the plate is because of its good
behaviour in that position [2]. The aspect of the field with
this first screen was:

05 0 0s

Figure 5 — Flux lines distributions with the first screen.

Results from this redistribution of the magnetic field
were not successful, even increasing the width of the iron
from the initial 0.5m to nearly 2m the reduction was not
enough.

The second option was then the introduction of a second
iron plate on each lateral. Different simulations were
performed, varying the width of the plates as well as the
distance between them. The optimal distance was
concluded to be 5cm. With this new disposition, a great
reduction was obtained on the x direction but it was still
poor in the y direction. The aspect of the field
distribution can be observed in figure 6.

a8 o 04 01 o 02

Figure 6 - Flux lines distributions with a second screen.

It was decided, instead of incrementing the lateral
volume of the screen, and due to problems of space, to
install other parts of the screen in the y direction. So,
aluminium was used to close the screen around the coil
placing 2 wings of this material, with an angle of 60°, on
each of the exterior iron plates. The resulting structure
was as follows:

/ Screen \
PN

Coil

Iron

Aluminium
e TS

Figure 7 - Section of the final design of the screen surrounding
the coil.

Various angles for the wings were simulated. Equally,
fixing them to the interior iron plate was tried too. Form
all the possibilities, the previous distribution was found
to be the best. This solution adopted as definitive creates
a distortion of the magnetic field as is visualized below.

Figure 8 - Magnetic flux lines simulated with the coil shielded.

Once simulated and the designed values obtained under
the limits and with a certain security margin, the screen
was constructed and installed.

C. Final measurements.

After the design, construction and installation of the
screen, new measurements were performed in order to
check the efficiency of the shielding and verify the
calculations and simulations carried out during the
design. The results are summarized in table 2. Once again
the magnetic field density is expressed in uT and the
position in meters having as the (0,0) reference the centre
of the coil.



Foint 1 2 3 4 ] ]
Position X 0. 1 1.5 2 0.5 1
Position ¥ 0 a n n 0.5 -0
Field(E) 91 36 14 ] B2 34
Point 7 g 9 10 11 12 13

Position 2 1.3 2 0.5 1 1.5 | 035 1

Position ¥ | 0.5 [ -0.5 -1 -1 -1 I I

Field (B} 12 4 45 21 14 20 11
Table 2 - Values of magnetic field density with screen.

By comparing tables 1 and 2, it is clearly observed that
the values of magnetic field have registered a big
reduction in all the point, except point number 9. This is
due to the fact that the screen reduces the field absorbing
magnetic flux lines and confining this energy into the
material, but also deflects the unabsorbed flux lines. This
phenomenon makes it possible to increase the magnetic
field in some regions of the space due to the
concentration of magnetic lines of higher field intensity.
This is the case of point 9 as has been seen during the
design. It is located close of the axe of the coil were
magnetic field lines are concentred.

Apart from that, the goal of the reduction of magnetic
flux density under the limits has been accomplished for
all the points. None of them rests above 100uT which
was the requirement. The percentage of reduction varies
from the 88% obtained in point 1 to the 20% of point 11.
The smaller the field was at the beginning, the smaller
the reduction obtained. Anyway, for the rest of the points
the reductions are all important but different, due to the
deformation registered by the screen.

4. Conclusions

The whole design of a magnetic screen has been
performed throughout measurements and simulations.

The magnetic field reduction achieved by means of the
installation of the screen goes beyond the 88% in the
most critical points referred to the initial situation. The
combination of two kinds of materials as well as the good
selection of the relative position has been fundamental in
order to obtain such a large reduction.
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Resumen. El incremento en los tltimos afios de la
preocupacion por los posibles efectos que pudieran tener los
campos magnéticos, producidos por las lineas eléctricas de alta
tension en los seres vivos, ha originado multitud de estudios e
informes para esclarecer esta posible fuente “productora” de
enfermedades. Creemos que puede resultar de utilidad, para
futuros disefios de lineas de trasporte de energia eléctrica,
emplear una herramienta de céalculo como es el método de
clementos finitos, para el calculo de la distribucion y magnitud
del campo magnético generado por las lineas eléctricas. De esta
forma, se puede conocer con antelacion si la linea produce un
campo magnético superior al estimado por la Recomendacion
del Consejo Europeo 1999/519/CE, que establece el limite de
tolerabilidad para el campo magnético en 100 uT y, en caso
necesario tomar las medidas correctoras oportunas. En este
trabajo utilizando el método de elementos finitos, se calcula la
densidad de flujo magnético generado por una linea de 30 kV
de doble circuito y se comparan los resultados con los medidos
experimentalmente (en la linea). Igualmente se simula el
comportamiento de diferentes configuraciones geométricas de
lineas eléctricas con el fin de determinar cuales producen una
menor “contaminacion magnética”.

Palabras llave. Campo magnético, contaminacion
magnética, método de elementos finitos, lineas eléctricas,

1. Introduccion

Algunos experimentos de laboratorio han detectado que,
bajo determinadas condiciones, y en algunos modelos en
animales, los campos magnéticos pueden tener efectos
bioldgicos. Sin embargo, ni las investigaciones "in vitro",
ni las realizadas a animales y personas han demostrado
que dichos campos sean nocivos para la salud. Tampoco
han permitido establecer el mecanismo mediante el cual,
los campos magnéticos podria actuar sobre los seres
vivos ni, lo que es mas importante, a partir de qué dosis
podria hablarse de riesgo para las personas.

El Ministerio de Sanidad y Consumo de Espaiia en Julio
de 2001 establece: "No puede afirmarse que la
exposicion a campos electromagnéticos dentro de los
limites establecidos en la Recomendacién del Consejo
Europeo (1999/519/CE) produzca efectos adversos para

la salud humana. Por tanto, el comité concluye que el
cumplimiento de la citada recomendacion es suficiente
para garantizar la proteccion de la poblacion”

La recomendacién de la Unién Europea, de 12 de Julio
de 1999, fija el limite de tolerabilidad en 100 uT, la cual
ha tenido en cuenta el principio de precaucion. Esta
recomendacion es ratificada por multitud de organismos,
instituciones, informes cientificos, médicos, etc. Entre
ellos destacamos:

- La Asociacién Internacional para la Proteccion
radiologica (IRPA).

- El Instituto Nacional de Normativa de Estados
Unidos (ANSI).

- La Comision Internacional para la Proteccion contra
la Radiacion no Ionizante (ICNIRP).

- El Consejo Nacional de Proteccion Radiologica del
Reino Unido (NRPB).

- El Consejo Nacional de Proteccion Radiologica y
Medidas de Estados Unidos (NCRP).

- El Comité Europeo de Normalizacion Electrotécnica
(CENELEC).

En los ultimos afios, se han publicado distintos trabajos
en los que se estudia el campo magnético producido por
lineas de transporte de energia eléctrica [1] — [5] y la
forma de reducirlo [6] — [7].

El primer y principal objetivo del trabajo, es simular el
comportamiento magnético de una linea de alta tension,
utilizando el método de elementos finitos mediante
modelos en dos dimensiones, y comparar los resultados
obtenidos con las medidas experimentales realizadas en
la linea.

El segundo objetivo es simular y analizar la distribucion
de la densidad de flujo magnético en funcion de la
configuracién geométrica de los conductores de la linea,
la secuencia de fase y el desfase de corrientes entre
circuitos, con el fin de determinar que configuraciones
producen una menor “contaminaciéon magnética”.



2. Linea de alta tension

El método presentado en este trabajo, se ha aplicado a la
determinacion y medida de la distribucion de la densidad
de flujo magnético de una linea eléctrica de alta tension
de 2% categoria, de 30 kV y doble circuito con un
conductor por fase de aluminio acero LA-180. La
configuracion de la linea es tipo barril, siendo la altura
del conductor mas bajo en el centro del vano de 12 m.

En la figura 1, puede verse la configuracion de la linea.

Fig. 1. Linea eléctrica de alta tension.

3. Metodologia

Los pasos seguidos en la comunicacion para validar el
método propuesto son los siguientes:

1) Medir la densidad del flujo magnético en una
recta situada perpendicular a la linea de alta
tension, en el centro del vano y a un metro del
plano del terreno. Las medidas se realizan a
ambos lados del centro de la linea con un
minimo de 10 puntos de medida y hasta una
distancia de 25 m del eje de la linea.

2) Conocer el historico de corrientes y potencias en
el tiempo de las medidas.

3) Utilizando el método de elementos finitos,
simular el comportamiento de la linea para la
corriente, en el momento de realizar las
medidas, facilitada por la  compaiiia
suministradora en el histérico de potencias.

4) Medir el valor de la densidad de flujo magnético
en el modelo de elementos finitos en los mismos
puntos indicados en el punto 1.

5) Verificar que la magnitud y distribucion del
campo magnético obtenido de la simulacion
estan acordes con las leyes fisicas fundamentales
para el calculo del campo magnético.

6) Comparar los valores obtenidos en las
mediciones de campo con los medidos en la
simulaciéon del comportamiento de la linea
utilizando el método de elementos finitos.

7) Simular el comportamiento de distintas
configuraciones de lineas con el fin de
determinar que configuraciones producen una
menor “contaminaciéon magnética”.

4. Modelo

El modelo de elementos finitos utilizado es plano 2D y
esta constituido por una seccion recta de los 6
conductores y el espacio de aire que los rodea. El espacio
de aire tomado a la izquierda, arriba y derecha de los
conductores es de 25 m (debe ser suficientemente amplio
para admitir que en el contorno del modelo, la densidad
de flujo magnético sea despreciable).

En la figura 2, se muestra el modelo utilizado.

L Y
A

Mrvel del terreno

Fig. 2. “Modelo”

Los elementos utilizados son planos de 4 nodos. En la
figura 3, se muestra el mallado utilizado en la zona de los
conductores.

Las excitaciones se definen por medio de la densidad de
corriente en cada uno de los conductores. La densidad de
corriente se calculada a partir del histdérico de potencias,
en el periodo en el que se realizaron las medidas de
campo.

Las propiedades se definen por medio de la
permeabilidad magnética del aire, conductores eléctricos

y la tierra.

La condicion de contorno es vector potencial magnético
nulo en la periferia del modelo.

El tipo de analisis realizado es magnetostatico.
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Fig. 3. Mallado

La simulacion del comportamiento de la linea, se ha
realizado para instantes de tiempo de 0; 2,5; 5; 7.5; 10;
12,5, 15; 17,5 y 20 ms (cada 45° durante un periodo) de
la forma de onda correspondiente a la corriente por la
fase R.

En la figura 4, se muestra la forma de onda de la
densidad de flujo magnético en el centro de la linea y
centro del vano, a un metro de altura de la superficie del
terreno, obtenida de la simulacion del comportamiento de
la linea utilizando el método de elementos finitos (50 A
por circuito).

Podemos observar que, para la corriente de ensayo, la
forma de onda de la densidad de flujo magnético esta
desfasada 24,5° respecto de la forma de onda de la
corriente por la fase R.

En las figuras 5 y 6 se muestra respectivamente, la
distribucion del vector potencial magnético y densidad de
flujo magnético, en la zona de los conductores, para el
instante en el que la corriente es maxima en la fase R.

nan

Densidad de flujo magnéteo (1w T)

Tenpo (ns]

Fig. 4. Densidad de flujo magnético

Figura 5. Vector potencial magnético

Fig. 6. Densidad de flujo magnético

5. Comparacion de resultados

Una vez realizada la medida de campo y la simulacion
del comportamiento de la linea para las corrientes
calculadas (50 A por circuito), se tienen los valores de
densidad de flujo magnético mostrados en la figura 7.

Podemos observar como los resultados obtenidos por
simulacion se asemejan a los medidos
experimentalmente. Unicamente en los puntos situados
bajo la eléctrica linea, se obtiene por medicion un valor



de la densidad de flujo magnético ligeramente superior al
obtenido por simulacion.
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Fig. 7. Densidad de flujo magnético

La diferencia existente entre los valores medidos en las
practicas de campo con los obtenidos por simulacion,
pueden ser debido principalmente a que la corriente real,
en el periodo de medicion, fuera ligeramente inferior a la
calculada por el histograma de potencias facilitado por la
compaiia suministradora y también a la precision del
instrumento de medida.

En al curva de medidas de la practicas de campo (Fig 7),
se observa que los valores de densidad de flujo
magnético en el lado derecho son algo superiores a la
misma distancia en el lado izquierdo, lo que demuestra
que la corriente real por el circuito 1, en el momento de
realizar las medidas, era superior a la corriente por el
circuito 2.

El campo magnético en cada uno de los ejes se ha
medido con un gauximetro con un rango de medida de
0,01 uT a 2000 uT (2 mT), con una precision de £10 % y
un acho de banda de 30 a 300 Hz.

Las medidas de densidad de flujo magnético, se
realizaron en puntos separados dos metros entre si y
situados en una recta localizada perpendicular a la linea
de alta tension, en el centro del vano y a un metro del
plano del terreno. En cada uno de los puntos se realizan
tres medidas (B, By, B,), calculando el valor resultante de
la densidad de flujo magnético en ese punto, por medio

de la ecuacion:
B=.|B; +B; +B: (1)

Realizado nuevamente la simulacion del comportamiento
magnético de la linea, para el valor maximo de corriente,
(400 A por circuito), se tiene un valor maximo de la
densidad de flujo magnético de 3 uT (medio en el centro
del vano y a un metro de altura sobre el plano del
terreno). El valor obtenido es muy inferior a los 100 puT
establecidos por la recomendacion de la Unién Europea
1999/519/CE.

6. Simulacion del campo magnético con
distintas configuraciones y/o secuencias
de fase.

En vista de los resultados obtenidos anteriormente, en
este apartado simulamos el comportamiento magnético
de: a) distintas configuraciones de lineas y, b) distintas
secuencia o desfases de las corrientes entre circuitos. En
ambos casos el estudio se realiza para el valor maximo de
la corriente por la linea (400 A por circuito).

A. Distintas configuraciones

En la figura 8, se muestran las distintas configuraciones
de lineas estudiadas.
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Fig. 8. Distintas configuraciones

Una vez realizada la simulacion del comportamiento de las
distintas configuraciones, se tiene el resultado mostrado en la
figura 9.
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Fig. 9 Densidad de flujo magnético en distintas
configuraciones de los conductores de la linea

Se puede observar que el valor de la densidad de flujo
magnético disminuye aproximadamente a la mitad,
utilizando las configuraciones en tridangulo y horizontal,
mientras que, como era esperado, la configuracion en
doble capa vertical da resultados muy similares a la
configuracion barril.

En la figura 10, se muestra como varia la distribucion de
la densidad de flujo magnético en funcion de Ia
configuracion geométrica de los conductores de la linea,
para el instante en el que la corriente es maxima en la
fase R.
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Fig. 10. Distribucion de la densidad de flujo magnético

B. Modificacion de la secuencia de fases o desfase de
corrientes entre circuitos.

Finalmente se han estudiado como afecta en la
distribucion de la densidad de flujo magnético, los
siguientes factores:

e Cambio del orden de secuencia de fases del
circuito 2 (configuracion 1 — véase figura 11a).

e Cambio del orden de secuencia de fases y
adelanto de 30° de las corrientes del circuito 2
con respecto a las corrientes del circuito 1
(configuracion 2 - véase figura 11b)

e Adelanto de 30° de las corrientes del circuito 2
respecto del circuito 1 (configuracion 3 - véase
figura 11c).
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Fig. 11. Distintas secuencias y/o desfases de corrientes
entre circuitos

Una vez realizado el analisis se tienen los resultados
mostrados en la figura 11.

Se puede apreciar como al cambiar el orden de secuencia
de fases en uno de los circuitos (configuracion 1), se
reduce el campo magnético de una forma importante
(66 %). Si ademas de esto, las corrientes entre a ambos
circuitos estan desfasadas (configuracion 2), la reduccion

del campo es mas acusada (74 %). En cambio si
unicamente las corrientes de un circuito van desfasadas
30° respecto de las del otro (configuraciéon 3), no se
obtiene una reduccion del campo magnético apreciable.
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Fig. 12. Densidad de flujo magnético para distintas secuencias
del orden de sucesion de fases y/o desfases de corrientes

La figura 13, muestra la distribucion de la densidad de
fluyjo magnético para cada una de las configuraciones
anteriormente indicadas para el instante en que la
corriente es maxima en la fase R.

Original Configuracion 1

Configuracion 3

Configuracion 2

Fig. 13. Distribucion de la densidad de flujo magnético

De los resultados anteriores, podemos indicar que con un
adecuado replanteo del orden de secuencia de fases y del
“desfase de corrientes entre los dos circuitos” se puede
reducir los niveles de densidad de flujo magnético de
forma importante.

En este trabajo se han estudiado distintas configuraciones
de lineas y se ha indicado cual es la mas aconsejable
respecto de la minima “contaminaciéon magnética”. No
obstante en el disefio de una linea, influyen otros factores
como la capacidad entre conductores o entre estos y
tierra, el tamafio de las torres, etc.



El método presentado en este trabajo es de gran ayuda
para los ingenieros eléctricos que se dedican al calculo de
lineas eléctricas, pues permite incluir en sus proyectos
ademas de los datos habituales, la curva de densidad de
flujo magnético esperada.

Otra aplicacion importante que puede tener el método es
el calculo de la capacidad entre conductores y a tierra de
la linea propuesta.

7. Conclusiones

Segun los resultados de las medidas realizadas “in situ”,
se constata que el campo magnético producido por esta
linea de 30 kV de doble circuito, estd por debajo del
limite de tolerabilidad establecido por la recomendacion
de la Union Europea, 1999/519/CE.

La simulacion a través de método de elementos finitos,
da resultados aceptables y resulta una herramienta muy
util para la realizacion de estudios de campo magnético.

El método presentado en este trabajo permite realizar
comparaciones entre los “mapas” de densidad de flujo
magnético, generados por distintos tipos de
configuraciones geométricas de los conductores de la
linea, con o sin cambio de la secuencias de fase y/o
desfase de las corrientes entre circuitos.

Se ha constatado que la configuracion triangulo y
horizontal ofrecen un mejor resultado que la
configuracion barril y vertical.

Con una correcta redistribucion de las fases se consigue
reducir de una forma importante el valor del campo. No
obstante en el disefio de una linea han de considerarse
otros factores tales como las capacidades entre
conductores, las pérdidas por efecto corona, el costo de la
linea, etc.

El método expuesto pueda utilizarse para determinar
formulas de aplicacion industrial, para calcular el valor
del campo magnético “producido” para distintas
configuraciones de lineas en funcién de la corriente y la
secuencia de fases.
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